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Abstract—Auto-Associative Neural Network (AANN) is a fully
connected feed-forward neural network, trained to reconstruct its
input at its output through a hidden compression layer. AANNs are
used to model speakers in speaker verification, where a speaker-
specific AANN model is obtained by adapting (or retraining) the
Universal Background Model (UBM) AANN, an AANN trained
on multiple held out speakers, using corresponding speaker data.
When the amount of speaker data is limited, this adaptation pro-
cedure leads to overfitting. Additionally, the resultant speaker-spe-
cific parameters become noisy due to outliers in data. Thus, we
propose to regularize the parameters of an AANN during speaker
adaptation. A closed-form expression for updating the parameters
is derived. Further, these speaker-specific AANN parameters are
directly used as features in linear discriminant analysis (LDA)/
probabilistic discriminant (PLDA) analysis based speaker verifi-
cation system. The proposed speaker verification system outper-
forms the previously proposed weighted least squares (WLS) based
AANN speaker verification system on NIST-08 speaker recogni-
tion evaluation (SRE). Moreover, the proposed speaker verifica-
tion system obviates the need for an intermediate dimensionality
reduction (or i-vector extraction) step.

Index Terms—Adaptation, auto-associative neural network, reg-
ularization, speaker verification.

I. INTRODUCTION

HE goal of a speaker verification is to verify whether a

given utterance belongs to a claimed speaker or not based
on a sample utterance from claimed speaker. In other words,
the task is to verify whether a given two utterances of a speaker
verification trial belong to the same speaker or not. Traditional
speaker verification systems use likelihood ratio between
Gaussian Mixture Model (GMM) based Universal Background
Model (UBM) and its maximum a posteriori (MAP) adapted
speaker-specific model for making decision [1].

AANN is used as an alternative to GMM for modeling the
distribution of data [2], and it has several advantages—it re-
laxes the assumption of feature vectors to be locally normal and
can capture higher order moments. An AANN is a fully con-
nected feed-forward neural network with a hidden compression
layer, and trained for auto-encoding (reconstructing its input at
its output) task [3]. A block schematic of an AANN is shown in
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Fig. 1. Block schematic of an AANN.

the Fig. 1. This architecture consists of three non-linear hidden
layers between the linear input and output layers. The second
hidden layer contains fewer nodes than the input layer, and is
known as the compression layer.

Earlier AANN based speaker verification systems [2], [4],
[S] use the reconstruction error difference computed using
the UBM-AANN and the speaker-specific AANN models as
a score for making decision. The UBM-AANN is obtained
by training an AANN on multiple held out speakers using
the stochastic gradient descent, where gradient is computed
using the error back-propagation algorithm. Where as the
speaker-specific AANN is obtained by adapting (or retraining)
the entirc UBM-AANN using corresponding speaker data.
Better results are observed when only the weights connecting
third hidden layer and output layer of an UBM-AANN are
adapted. This indicates that adapting the entire UBM-AANN
with limited amount of speaker data leads to overfitting. Ad-
ditionally, the speaker-specific AANN parameters become
noisy due to outliers in the data. These issues are addressed
in [6] by projecting the adapted speaker-specific weights onto
a low-dimensional subspace (T matrix), which is learned to
minimize the reconstruction error between the speaker-specific
weights and their projection in a WLS sense. The subspace
coordinates representing the projection is known as an i-vector.
The block diagram of WLS based AANN speaker verification
system is shown in Fig. 2.

In this paper, we propose to regularize the weights connecting
third hidden layer and output layer of an UBM-AANN during
speaker adaptation. A closed-form expression for updating
the weights is also derived. This obviates the need for further
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Fig. 3. Proposed regularized AANN based speaker verification system.

projecting these weights onto a low-dimensional subspace.
We propose an AANN based speaker verification system
where regularized speaker-specific weights are directly used as
features for the linear discriminant analysis (LDA) followed
by PLDA model, as shown in Fig. 3. Experimental results on
NIST-08 SRE show that the proposed system outperforms the
WLS based AANN speaker verification system! [6].

II. REGULARIZED ADAPTATION OF UBM-AANN

The weight matrix connecting third hidden layer and output
layer of UBM-AANN is adapted for each utterance to ob-
tain a speaker-specific model. Let W, , denote the adapted
speaker-specific weight matrix corresponding to [*" session of
st speaker. The output bias vector b of UBM-AANN is not
adapted.

Let f;; , be the i*" feature vector (frame) of an utterance
corresponding to /** session of s'" speaker, and n(l,s) be
the number of such frames in that utterance. The third hidden
layer output vector of UBM-AANN corresponding to this
input is denoted with h;; ;. The following loss function (1) is
minimized to obtain the speaker-specific weight matrix Wy ,.
It consists of two terms. The first term is the sum of squared
reconstruction errors of the speaker-specific AANN. Second
term represents the L2 regularization of speaker-specific
weights, where [ is non-negative and controls the amount of
regularization.

n(l,s)

LWy =Y |fiz.—b- Wil
i=1
+8n(l, s)tr (W, Wi ). (1)

I'We found out that empirically there is no advantage of using mixture of
AANNS over single AANN when speaker-specific weights are projected onto a
subspace.

It is possible to derive the closed-form expression for weight
matrix W, , by differentiating the expression above with re-
spect to W , and setting it to zero.
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III. REGULARIZED AANN BASED SPEAKER
VERIFICATION SYSTEM

The block diagram of the proposed regularized AANN based
speaker verification system is shown in Fig. 3. The various com-
ponents of this system are described below.

A. Feature Extraction

The acoustic features used in our experiments are 39 di-
mensional frequency domain linear prediction (FDLP) features
[7]-[11]. In this technique, sub-band temporal envelopes of
speech are first estimated in narrow sub-bands (96 linear bands).
These sub-band envelopes are then gain normalized to remove
reverberation and channel artifacts. After normalization, the
frequency axis is warped to 37 Mel bands in the frequency
range of 125-3800 Hz to derive a gain normalized mel scale
energy representation of speech. This is similar to the mel
spectrogram obtained in conventional mel frequency cepstral
coefficients (MFCC) feature extraction. These mel band en-
ergies are converted to cepstral coefficients by applying a log
and Discrete Cosine Transform (DCT). The top 13 cepstral
coefficients along with derivative and acceleration components
are used as features, yielding 39 dimensional feature vectors.
Finally, a subset of these feature vectors corresponding to
speech are selected based on the voice activity detection infor-
mation provided by NIST.
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B. UBM-AANN

Gender-specific AANN based UBMs are trained on a tele-
phone development data set consisting of audio from the NIST
2004 speaker recognition database, the Switchboard-2 Phase
IIT corpora and the NIST 2005 speaker recognition database.
We use only 400 male and 400 female utterances each corre-
sponding to about 17 hours of speech.

AANN based UBMs are trained using the FDLP features (see
Section III-A) to minimize the reconstruction error loss func-
tion [6]. Each UBM has a linear input and linear output layers
along with three nonlinear (tanh nonlinearity) hidden layers.
Both input and output layers have 39 nodes corresponding to
the dimensionality of the input FDLP features. First, second
and third hidden layers have 20, 6 and 39 nodes respectively.
The number of nodes in each hidden layer is optimized for
speaker verification task by fixing rest of the AANN configura-
tion. Schematic of an AANN with this architecture is shown in
the Fig. 1. We have modified the Quicknet package for training
the AANNSs [12].

C. Adaptation of UBM-AANN

The weight matrix (39 x 39 = 1521 elements) connecting
third hidden layer and output layer of a gender-specific UBM-
AANN is adapted for each utterance to obtain a speaker specific
weights. The closed-form expression for adapting these weights
with regularization is described in Section II.

D. LDA/PLDA Training

Gender dependent linear discriminant analysis (LDA) trans-
forms are trained to project vectorized adapted speaker-specific
weight matrices onto a low-dimensional (240) space. The
resultant low-dimensional projections are length normalized
to reduce the mismatch during training and testing [13]. The
development data for training consists of Switchboard-2,
Phases II and III; Switchboard Cellular, Parts 1 and 2 and NIST
2004-2005 SRE [14]. The total number of male and female
utterances is 12266 and 14936 respectively.

Subsequently, the length normalized vectors (denoted with
q;,s) are modeled using the PLDA, a generative model for ob-
servations [15], [16]. They are assumed to be generated as

Qs =p+ P8, + €, (3)

where gt is an offset; ® is a matrix fewer columns than rows
representing a low-dimensional subspace; 3, is a latent iden-
tity variable having a normal distribution with mean zero and
covariance matrix identity; and €; 5 is a residual noise term as-
sumed to be Gaussian with mean zero and full covariance matrix
3. . Additionally, these variables are assumed to be independent.

Gender-specific PLDA models are trained using the same
development data that is used for training LDA transforms.
The maximum likelihood estimates of the model parameters
{p,®,E.} are obtained using an Expectation Maximization
(EM) algorithm [15].

E. Hypothesis Testing

Given two length normalized vectors qi, g2 of a speaker
verification trial, we need to test whether they belong to the
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TABLE I
DESCRIPTION OF VARIOUS TELEPHONE CONDITIONS OF NIST-08
C6 Telephone speech in training and test
C7 | English language telephone speech in training and test
C8 English language telephone speech spoken by a
native U.S. English speaker in training and test
TABLE II
EER IN % AND minDCF x 10° (SHOWN IN BRACKETS)
ON CONDITIONS C6, C7 AND C8 OF NIST-08
System C6 C7 C8
WLS of AANNs, 3 =0 122 (66.2) | 7.2 (38.3) | 6.4 (35.6)
240 dim. i-vector (baseline)
WLS of AANNS, back-prop 10.9 (60.4) | 6.4 31.6) | 6.2 (29.6)
240 dim. i-vector
Regularized AANNs, 8 = 0.005 || 10.2 (56.7) | 5.4 (28.1) | 4.8 (23.7)
240 dim. LDA (proposed)

same speaker (H ) or different speakers (#,4). For the Gaussian
PLDA above, the log-likelihood ratio can be computed in a
closed-form as

p (a1, qz2|Hs)
plai|Ha)p(az|Ha)

NAEIELER A
Q| 87 &dT+X.

vf[a][r][22"+8. 0 @
Qe 0 i Y R 3

where N(.; %, A) is a multivariate Gaussian density with mean 7
and covariance A. The above score can be computed efficiently
as described in [13], [17].

score=log

IV. BASELINE WLS BASED AANN SPEAKER
VERIFICATION SYSTEM

The baseline speaker verification system is shown in the
Fig. 2. The system has few dissimilarities with the proposed
system. The major difference is that the process of adapting
the weight matrix of a gender-specific UBM-AANN that im-
pinges on output layer is not regularized. The two different
approaches used for adaptation are either to apply back-prop-
agation training as in [6] or to set 3 to zero in (2). Another
difference is that gender dependent low-dimensional subspaces
(T matrices) are trained to capture most of the variability
of adapted weights in a WLS sense. Low-dimensional (240)
i-vectors are extracted using T matrices. Subsequently, LDA
transforms are learned to rotate the i-vector space. On the other
hand, PLDA configuration is same for both the baseline and the
proposed systems.

V. EXPERIMENTAL RESULTS

Speaker verification systems are tested on the telephone con-
ditions, described in Table I, of NIST-2008 speaker recogni-
tion evaluation (SRE). Table II lists the EER and minimum de-
tection cost function (minDCF) of NIST-2008 for the baseline
WLS based AANN (see Section I'V) speaker verification system
and the proposed regularized AANNs based speaker verifica-
tion system (see Section III). These neural network systems use
the same UBM-AANN of size (39, 20, 6, 39, 39), where each
number indicates the number of nodes in a corresponding layer.
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Fig. 4. Error rates of regularized AANNSs based speaker verification system on
NIST-08 as a function of amount of regularization (3).

The error rates of gender-dependent WLS based AANN
speaker verification systems are shown in the first two rows of
Table II. These systems project the adapted weight matrices
onto 240 dimensional i-vector space and rotate them using
LDA. The resultant space is modeled using 140 dimensional
(number of columns of ®) subspace PLDA model. For baseline
system (first row of Table II), /3 is set to zero in (2) when
computing the adapted weight matrices. For the other system
(in second row of Table II), back-propagation algorithm? is
applied for computing the adapted weight matrices. The pro-
posed regularized AANNs based speaker verification system
(see Fig. 3) results are listed in third of the table. A non-zero
regularization ($ = 0.005) is used in (2) when computing the
adapted weight matrices. Subsequently, adapted weights are
projected onto a 240 dimensional space using LDA. As in the
baseline system, 140 dimensional subspace PLDA model is
used for hypothesis testing. It can be observed that the proposed
system outperforms the baseline system and yields a relative
improvement of 20.9% in EER and 22.5% in minDCF over the
baseline.

The effect of changing (3 on the error rates of the proposed
regularized AANNSs speaker verification system is shown in
Fig. 4. As expected, the system performance increases with the
regularization and starts degrading for (3 greater than 0.005.

VI. DISCUSSION AND CONCLUSIONS

It was observed that the baseline speaker verification system
(see Fig. 2) when the UBM-AANN is adapted with regular-
ization (# = 0.005), it yields comparable results to the pro-
posed system (see Fig. 3). This result along with the results

2Back-propagation can be thought of as some form of regularization because
the final adapted weights differ from the solution with /3 set to zero in (2).
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in Table II indicate that the subspace training (T matrix) and
i-vector extraction steps are unnecessary, and regularized adap-
tation of UBM-AANN holds the key for obtaining the best per-
formance. These observations suggest a simpler speaker verifi-
cation system, shown in Fig. 3.

In this paper a closed-form expression for adapting the UBM-
AANN with regularization is derived. We have shown that regu-
larized adaptation of UBM-AANN helps improving the speaker
verification system performance. Moreover, this also results in
a much simpler system.
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