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Abstract

For speaker recognition studies, it is necessary to process the
speech signal suitably to capture the speaker-specific infor-
mation. There is complementary speaker-specific information
in the excitation source and vocal tract system characteristics.
Therefore it is necessary to separate these components, even
approximately, from the speech signal. We propose linear pre-
diction (LP) residual and LP coefficients to represent these two
components. Analysis is performed in a pitch synchronous
manner in order to focus on the significant portion of the speech
signal in each glottal cycle, and also to reduce the artifacts of
digital signal processing on the extracted features. Finally, the
speaker-specific information is captured from the excitation and
the vocal tract system components using autoassociative neural
networks (AANN) models. We show that the pitch synchronous
extraction of information from the residual and vocal tract sys-
tem bring out the speaker-specific information much better than
using the pitch asynchronous analysis as in the traditional block
processing using an analysis window of fixed size.

Index Terms: Speaker recognition, pitch synchronous, AANN,
glottal closure instants.

1. Introduction

One of the main issues in speaker recognition task is to extract
features specific to a given speaker. If possible, these features
should be captured from a small amount of data during both
training and testing phases. Also, the features should be robust
against degradation in speech due to channel and noise. Over
the past several years, many attempts have been made to capture
the speaker-specific information in a model from a large amount
of training data, and test the model using a limited amount of
data. The search for features spans over several dimensions,
such as at language level, nonverbal gestures, suprasegmental
(> 100 ms) features, segmental (10-30 ms) features and sub-
segmental (1-3 ms) features. At the language level, one can
use an automatic speech recognition (ASR) system to deter-
mine the usage of a subset of word combinations specific to a
speaker. This requires a robust ASR, and also a large amount of
data from each speaker. Nonverbal gestures include use of non-
speech acoustic sounds like umm's, ah’s and with some other
user habits such as ‘you see’, ‘I mean’ etc. Identifying and de-
tecting these gestures is a challenging task. Also, a large amount
of data is needed from each speaker in order to get sufficient
examples to identify a speaker. Features at the suprasegmental
level are usually prosody features, consisting of intonation and
duration patterns of a given speaker. The suprasegmental fea-
tures are not only specific to a language and an environment,
but they are also acquired by an individual over a period of
time. The segmental features correspond mostly to the acous-
tic characteristics of individual sound units, and they reflect the
vocal tract system and source characteristics in a short-segment
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of over 10-50 ms of speech. The segmental features are typi-
cally the short-term spectral features reflecting the vocal tract
size, shape and its dynamics. The distribution of these features
obtained using large amount of data is used to represent a given
speaker. The distribution is approximated by statistical models
such as Gaussian mixture models (GMM) and hidden Markov
models (HMM) [1]. These segmental features not only reflect
the characteristics of a speaker, but also the characteristics of
sound units in a speech signal. To isolate characteristics of a
speaker from characteristics of speech sounds is a challenging
task.

It is known that the characteristics of speech at the subseg-
mental level, especially the excitation source, reflects the physi-
ological characteristics of an individual. It is difficult to identify
and extract the features at the subsegmental level from speech
signal, which contains characteristics of both excitation source
and vocal tract system. But it was shown that these source char-
acteristics indeed have speaker-specific information, which is
complimentary to the information in the vocal tract system char-
acteristics [2, 3, 4, 5].

The objective of this study is to explore new features spe-
cific to a given speaker. These features correspond mostly to
subsegmental and segmental features, so that the speaker infor-
mation can be extracted and represented using a limited amount
of data during training, and still lesser amount of data during
testing. The main idea is to capture the speaker-specific infor-
mation from the excitation source and the vocal tract system
components of a speech signal separately, as each of these com-
ponents may contain complementary information characteriz-
ing a speaker. In earlier studies [4, 6, 7, 8, 9] auto-association
neural network (AANN) models were proposed to capture the
speaker-specific information separately from the linear predic-
tion (LP) residual and from the weighted linear prediction cep-
stral coefficients (WLPCC). In the case of excitation informa-
tion, the AANN model is used to capture the nonlinear relations
among the samples of the LP residual. For this purpose, about
4 ms of the residual samples are presented, with a shift of one
sample. The size of the input and the output layers of the AANN
models are the same, as the input itself is the desired pattern. In
the case of system parameters, a wLPCC vector is presented
both as input and the desired output. The wLPCC vectors are
derived for each frame of size about 20 ms with a shift of 5
ms. While the complementary nature of the features captured
by these two models was demonstrated in speaker recognition
experiments [2, 6], the performance of the models individually
was not high. It is difficult to understand the information cap-
tured by these nonlinear AANN models. Hence it is difficult to
find out how the performance can be improved using these mod-
els. One reason for poorer performance is probably because all
the residual data may not contribute to speaker-specific infor-
mation. Likewise, it is also likely that extraction of the vocal
tract parameters through LP analysis, with a fixed frame size
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and a frame shift, may also introduce several spurious wLPCC
vectors which may smear the distribution corresponding to the
speaker-specific information.

In this paper, we propose the use of pitch synchronous
speech data for building AANN models for capturing the
speaker-specific information in the excitation source and the vo-
cal tract system. We show that these new models perform sig-
nificantly better than the models built using pitch asynchronous
data as in the traditional block processing using an analysis win-
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Figure 1: (a) Segment of a speech signal, (b) zero-frequency filtered

signal, and (c) differenced EGG signal. Epoch locations marked by
arrows.

2. Identification of GCIs for pitch
synchronous analysis

The major source of excitation of the vocal tract system in
speech production is due to vibration of the vocal folds at the
glottis. The instant of significant excitation is due to sharp clo-
sure of the vocal folds in each glottal cycle. The glottal clo-
sure is almost impulse-like, and the signal energy, and hence
the signal to noise ratio (SNR) of speech, is generally high
around these instants. Also, some significant speaker-specific
characteristics may be present around these instants, as the sig-
nal around these regions reflect the vibration characteristics of
the glottis of the individual. So by extracting the glottal closure
instants (GClIs) from speech signal, it is possible to focus the
analysis around these instants to extract speaker-specific infor-
mation in the excitation and the vocal tract system components
of a speech signal.

Recently, a method was proposed to extract GCIs from
speech signals using the output of 0 Hz resonator filter. The
following are the steps to extract the GCls [10].

(a) The speech signal s[n] is differenced to remove any slowly
varying component introduced by the recording device.

z[n] = s[n] — s[n — 1] )
(b) The differenced speech signal z[n] is passed through a cas-
cade of two ideal zero-frequency (digital) resonators. That is

yoln] = = 3" argoln — k] + 2[n] @)

where a1 = —4, az = 6,’“5; = —4 and a4 = 1. The resulting
signal yo[n] grows approximately as a polynomial function of
time.

(c) The average pitch period is computed using the autocorrela-
tion function of 30 ms segments of z[n].

(d) The trend in yo [n] is removed by subtracting the local mean
computed over the average pitch period at each sample. The

resulting signal N

ST 2 weltml )

m=—N
is the zero-frequency filtered (ZFF) signal. Here 2N + 1
corresponds to the number of samples in the window used for

yln] = yoln] —
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Figure 2: Training error as a function of iteration number, for (a) ex-
citation source models and (b) vocal tract system models. Here x indi-
cates the number of nodes in the compression layer.
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Figure 3: Normalized errors obtained from AANN models of various

architectures, using excitation source information. In each plot, solid

line (“—’) and dotted line (‘- - - *) correspond to genuine and imposter

curves, respectively.
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trend removal. The choice of the window size in not critical as
long as it is in range of one to two pitch periods. Fig. 1(b) shows
the filtered signal of the speech segment shown in Fig. 1(a). It
was shown in [10] that the instants of positive-to-negative zero
crossings (PNZCs) correspond to the instants of significant ex-
citation in voiced speech, called epochs [10]. The locations of
PNZCs of the filtered signal are shown in Fig. 1(c). There is
a close agreement between the locations of the strong positive
peaks of the differenced EGG (DEGG) signal and the instants
of PNZCs derived from the filtered signal. Two pitch periods of
the speech signal are chosen for deriving the residual using LP
analysis. A 10" order LP analysis is used on the signal sam-
pled at 8 kHz. The system characteristics around each epoch is
represented by a 15 dimensional wLPCC vector derived from
the 10 LPCs. A 4 ms segment (i.e, 32 samples) of the LP resid-
ual is chosen around each epoch to extract the information from
the excitation source component.

3. AANN models for capturing excitation
source information

A S-layer AANN  model with the structure
32L 80N xN 80N 32L is chosen for extracting the
speaker-specific information using the 4 ms LP residual around
each epoch. Here L refers to linear units, NV refers to nonlinear
(tanh()) output function of units, and x refers to the number of
units in the compression layer. The value of x is varied to study
its effect on the model’s ability to capture the speaker-specific
information. The sizes of the input and the output layers are
fixed by the number of residual samples (around each epoch)
used to train and test the models. The expansion layers provide
flexibility for mapping and compression. Typically about 15
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Figure 4: Cumulative sum of normalized errors obtained from AANN models of various architectures, using (a) pitch synchronous LP residual and (b)
pitch asynchronous LP residual. In each plot, solid line (‘—’) and dotted line (‘- - - *) correspond to genuine and imposter curves, respectively.

seconds of data is used to train a model for each speaker. Note
that only voiced segments are used, as the data is collected only
around the GCls.

The network is trained for 200 iterations, and the training
error plots are shown in Fig. 2(a) for different values of the num-
ber of units (x) in the compression layer. As can be seen from
the plots, since the error is decreasing with number of iterations,
the network is able to capture the information in the residual. It
is also seen that the decrease in error is more when the num-
ber of units in the compression layer are more. But beyond a
certain limit on the number, even if the error decreases, the gen-
eralizing ability may be poor. Also, the optimal number of units
in the compression layer may also be speaker-specific. The ef-
fect of the network parameters will be examined in the speaker
recognition experiments described in Sec. 5.

4. AANN models for capturing the vocal
tract system information

A 5-layer AANN model with the  structure
15L 40N xN 40N 15L is used for extracting the speaker-
specific information using 15 dimensional wLPCC vectors.
The wLPCC vectors are derived using LP analysis on two pitch
period segment around each epoch. The model is expected to
capture the distribution of the feature vectors, which is speaker-
specific. The training error plots for a speaker for different
number of units in the compression layer are shown in Fig. 2(b).
The training error plots do indicate that the information in the
distribution of the feature vectors is captured. The ability of
the model to capture the speaker-specific information can be
determined only through speaker recognition experiments, as
described in Sec. 5.

5. Speaker recognition experiments

In this section, we discuss the ability of the AANN models de-
scribed in the previous sections to capture the speaker-specific
information, and also the effect of model parameters, especially
the number of units in compression layer, on this ability. We
have used speech signals from TIMIT database, which consists
of 630 speakers and 10 utterances for each speaker. A universal
background model (UBM) is built from 100 speakers (50 male
and 50 female), using one utterance from each speaker, and the
network is trained for 200 iterations. We have used 10 speak-
ers (5 male and 5 female) data for speaker recognition experi-

671

100 200 300

300

100 200

200
GCl index

Figure 5: Normalized errors obtained from AANN models of various

architectures, using vocal tract system information. In each plot, solid

line (‘—’) and dotted line (‘- - - ) correspond to genuine and imposter

curves, respectively.
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ments. Eight utterances (approximately 15 seconds of speech
data) from each speaker are used to train over the UBM to build
the speaker’s AANN model, using 200 iterations. For testing,
each utterance is presented to a model, and the mean squared
error between the output and input, normalized with the magni-
tude of the input, is computed.

Fig. 3 show the plots of the normalized error obtained from
the AANN models of all the 10 speakers at each epoch for a test
utterance. The solid (“—) line is the output from the model of
the genuine speaker. The test utterance is fed to the models of
the other speakers, and the resulting error can be considered as
an imposter error. The imposter error curves are shown shown
by dotted (‘- - - *) lines. The plots correspond to three different
values (1, 6 and 12) of the number of units in the middle com-
pression layer. It can be seen that the solid line has the lowest
values for most of the frames. The cumulative sum of the error
is plotted in Fig. 4(a) to show that the total error is lowest for the
genuine speaker. Fig. 4(a) shows the cumulative errors for two
other speakers. They show that, for x = 12 units in the middle
layer, the error for the genuine speaker model is the least for the
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Figure 6: Cumulative sum of normalized errors obtained from AANN models of various architectures, using (a) pitch synchronous wLPCCs and (b)
pitch asynchronous wLPCCs. In each plot, solid line (“—’) and dotted line (‘- - - ”) correspond to genuine and imposter curves, respectively.

test utterances. Fig. 4 also shows that for some speakers even a
smaller number of units in the middle layer gives equally good
performance (spk 1 and spk 3).

Similar observations can be made from Figs. 5 and 6(a)
for the error plots for a test utterance tested against all mod-
els corresponding to the vocal tract system information using
wLPCCs. It is important to note that there is an optimal value
for the number of units in the middle compression layer, and
this number may be speaker-specific.

Finally, we show that the performance of speaker recogni-
tion is inferior when pitch asynchronous data is used for ex-
tracting both the excitation and vocal tract system information.
Figs. 4(b) and 6(b) show the plots corresponding to cumula-
tive sum of error from AANN models using the LP residual
and wLPCC vectors, respectively, derived from a frame size
of 20 ms and frame shift of 10 ms. The AANN model for
capturing excitation information is trained by LP residual sam-
ples obtained from nonoverlapping segments of 4 ms duration.
Note that for the purpose of illustration, pitch asynchronous er-
rors (Figs. 4(b) and 6(b)) are resampled to match their lengths
with their pitch synchronous counterparts (Figs. 4(a) and 6(a)).
For pitch synchronous analysis only voiced frames are used,
whereas for pitch asynchronous analysis all the frames of
speech are used. Figs. 4(a) (pitch synchronous LP resid-
ual) shows good discrimination between genuine and imposter
curves compared to Figs. 4(b) (pitch asynchronous LP resid-
ual). The difference is less evident for vocal tract information
(Figs. 6(a) and (b)).

6. Summary and Conclusions

In this paper, we have demonstrated the significance of using
pitch synchronous analysis of speech data and AANN models
for extracting speaker-specific information for speaker recogni-
tion studies. We have shown that the excitation information is
captured using 4 ms LP residual around the GCI, and the vo-
cal tract system information is captured using 15 dimensional
wLPCC vectors derived from two pitch period data around each
GCI. Speaker recognition experiments were conducted using a
subset of speakers from TIMIT data. The results show that fea-
tures derived from pitch synchronous analysis of speech data
give significantly better speaker recognition performance com-
pared to features derived from pitch asynchronous speech data.

In these studies, only the potential of pitch synchronous
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analysis was demonstrated. Large scale speaker recognition ex-
periments need to be conducted to evaluate the significance of
the excitation and the vocal tract system information captured
by the AANN models. Also, it is important to explore and de-
velop speaker-specific models by determining suitable AANN
models for individual speakers. It is also necessary to explore
methods to combine the evidence from excitation source and
vocal tract system for speaker recognition.
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