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Abstract

Performance of an automatic speech recognition system degrade

rapidly in presence of a mismatch between training and test acoustic

conditions. Usually, the mismatch affects different regions in feature

space differently. Significantly lower word error rates can be obtained

when regions with high signal-to-noise-ratio are given a high weight,

while other regions are deemphasized. This is the fundamental motiva-

tion of multi-stream systems. In this thesis, a framework for practical

multi-stream architectures is presented.

Past multi-stream systems employ a two stage training proce-

dure. In these systems, stream specific networks are trained in the first

stage and a large number of fusion networks are trained in the second

stage. Typically, the number of fusion networks required are exponen-
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tial to number of streams. For example a 5-stream system requires 31

(25 − 1) networks.

In this thesis, we first present training technique which elimi-

nates the need for the two stage procedure. The proposed technique also

helps in replacing multiple fusion networks with a single network. This

not only reduces computational cost during training, but also results in

a more robust system. Performance comparison in various noise robust

tasks resulted in a word-error-rate reduction of 5 – 10 % relative over

baseline models.

During test time, stream combination that produces the lowest

error rate needs to be determined. This has to be done both accurately

and efficiently. We proposed two performance monitor techniques to ac-

curately determine the streams which are least affected by mismatches.

For an efficient testing, a fast algorithm to search for the best stream

combination is introduced with a reduction of test time latency by a fac-

tor of 20.
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Chapter 1

Introduction

The problem of automatic speech recognition is to convert a speech sig-

nal into sequence of words. Speech recognition has been used in applications

like voice based dialing, telephone call routing, call centre analytics, etc. With

the exponential growth in computing power, voice based interaction with ma-

chines is making in roads in a diverse set of applications. The examples include

digital assistants like Amazon Echo or Google Home operating in living rooms,

in-car speech recognition by Amazon Alexa, Google Now, Apple Siri, etc. These

applications are exposing ASR technology to noises and acoustic mismatches

which can have serious impact on accuracy of the system. This thesis focuses

on improving robustness of automatic speech recognition systems to noises and

acoustic mismatches.
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A large number of methods have been proposed to make ASR systems

robust to acoustic noises. These methods can be broadly grouped into feature-

based and model-based methods. Feature-based methods focus on extracting

features from input signal which are invariant to noises, while still retaining

speech sound (e.g. phonemes) information. These techniques are usually moti-

vated from human auditory processing or make certain assumptions about the

noise type. Model-based approaches compensate for noise by adjusting acous-

tic model parameters. Usually, a subset of model parameters are re-estimated

on noisy speech signal to increase the overall likelihood of the model. Simi-

lar to feature-based methods, these techniques also make some assumptions

about the noise. While these techniques usually improve accuracy, they incur

significant computational cost.

1.1 Focus of the thesis

In this thesis, we focus on multi-stream approach for noise robust ASR

systems. Multi-stream speech recognition provides an intuitive way to improve

robustness of ASR system to noises. In this framework, several streams of infor-

mation are extracted from the speech signal, and these streams are adaptively

fused to improve noise robustness. The fundamental motivation behind multi-

stream recognition is, noise or environmental distortion is typically localized in

2
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the signal space. If the streams which are less corrupted can be identified and

decisions from these streams can be emphasized, substantial noise robustness

can be achieved.

1.2 Thesis outline

This thesis is organized as follows:

In chapter 2, we provide an overview of automatic speech recognition

system. A brief review of techniques which were proposed to improve noise

robustness of ASR systems is presented. We then present a detailed discussion

about multi-stream approach for noise robust ASR systems.

Chapter 3 focuses on multi-band systems, which are an archetype of

multi-stream approach for ASR. We present the proposed technique which is

aimed to improve multi-band systems. An analysis of these techniques and

comparison of new system with baseline models is also provided.

In chapter 4, we describe how the proposed technique can be used to

build a multi-stream system. Application of the techniques is shown to result

in multi-stream system which is easier to train and contains significantly lower

number of parameters.

In chapter 5, two new performance monitor techniques are proposed,

which are used to select noise robust regions of multi-stream system. We show

3
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that proposed performance monitor methods improve accuracy. Techniques to

reduce run time complexity are also presented in this section.

Finally, chapter 6 summarizes the major results and contributions of

this thesis and highlights some directions for future research.

4



Chapter 2

Overview of noise robust

speech recognition

This chapter introduces automatic speech recognition problem and its

machinery. It also discusses previous works on improving noise robustness of

speech recognition systems. Finally, the chapter is concluded by discussing the

scope of the thesis.

5



CHAPTER 2. NOISE ROBUST ASR

2.1 Automatic Speech Recognition

The task of automatic speech recognition (ASR) system is to convert

an input speech waveform into text. In the most general sense, the problem of

speech recognition is to estimate function H (·) which transforms speech signal

to text, concisely represented in the following equation

word sequence = H (speech signal) (2.1)

So the problem of building a speech recognizer is to estimate the function H (·)

. Modern ASR systems rely on statistical framework to convert speech to text.

In this framework, the transformation function H (·) has a probabilistic flavor

associated with it. A more precise statement of speech recognition problem, in

statistical framework, is given by the following equation [4,5]:

ŵ = arg max
w ∈ G

p(w|X) (2.2)

where X = x1, · · · · · ·xT corresponds to the sequence of observation feature vec-

tors extracted from the T frames of the input speech signal, G is a set of all

possible word sequences and ŵ is the hypothesized word sequence.

In order to better understand eqn 2.2, consider the problem of isolated

6
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word recognition with a finite vocabulary (G). Then the task is to assign given

speech signal (X) to one of the words in set G. Equation 2.2 suggests to choose

the word (ŵ) which has maximum posterior probability. Under the assumption

that distribution p(·) is “true” distribution, decision rule of eqn. 2.2 is guar-

anteed to minimize misclassification rate [6]. Continuous speech recognition,

which involves identifying word sequence, is in principle an extension to iso-

lated word recognition task with a significantly larger G. Equation 2.2 is also

referred to as maximum a posterior (MAP) rule for speech recognition, since we

choose ŵ as the one which has maximum posterior probability.

Inference of p (·|X) is reversed using Bayes rule as follows:

ŵ = arg max
w ∈ G

p(w | X)

= arg max
w ∈ G

p(X | w) p(w)

p(X)

= arg max
w ∈ G

p(X | w) p(w) (2.3)

The denominator of Bayes rule is ignored as it has no bearing on the arg max.

Inference of distributions p(X|w) and p(w) is much easier compared to infer-

ence of p(w | X). This is due to discrete nature of word sequences w compared

to continuous nature of speech features X.

7
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2.1.1 Language modeling

In eqn 2.3, p(w) models the word sequence w = w1, w2, · · · . This quan-

tity is referred to as language model (LM). Using chain rule of probability p(w)

can be reformulated as

p(w) = p(w1, w2, · · ·wn)

=

n∏
i=1

p(wi | w1, · · · , wi−1) (2.4)

The term p(wi | w1, · · · , wi−1) represents probability of word wi given

the history w1, · · · , wi−1. Assuming the availability of enough text corpus, these

probabilities can be reliably estimated by counting number of times wi occurred

in the context of w1, · · · , wi−1. However, having enough data to reliably estimate

all possible conditional distributions is impossible. Language models which

reduce the word history to n – 1 are referred to as n-gram language models. In

n-gram models p(wi | w1, · · · , wi−1) is approximated as follows

p(wi | w1, · · · , wi−1) ≈ p(wi | wi−(n−1), · · · , wi−1) (2.5)

Typically, 3-gram language models are used and even this case suffers from

data sparsity issues. Widely used approaches to address the data sparsity issue

8
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use models which “back-off” to lower order n-grams for infrequent contexts [7],

and those which perform statistical smoothing of the n-gram scores [8,9].

2.1.2 Acoustic modelling

The first term in eqn 2.3, p(X | w), is referred to as acoustic model

(AM) component of speech recognition. Direct inference of p(X | w) is difficult

as it involves modeling relationship between all possible acoustic sequences and

word sequences. In many ASR systems, a word is expressed as a sequence of

sub-word units (e.g. phonemes, tri-phones). Word models are then constructed

by glueing its constituent sub-word unit models. Similarly, model for a word

sequence is obtained by glueing word models. In this formulation, it is sufficient

to model relationship between acoustics and sub-words units. Hidden Markov

model (HMM) is the most widely used model for acoustic modeling in ASR. In

HMM framework, the AM term can be written as follows:

p(X | w) = p(X | s1, s2, · · · , sN ) (2.6)

=
∑

θ(s1:sN )

T∏
t=1

p(xt|θt; Λs1:sN ) p(θt|θt−1; Λs1:sN ) (2.7)

where s1, s2, · · · , sN is sub-word unit sequence corresponding to words W, θ(s1 :

sN ) are the possible state sequences of the HMM model defined by Λs1:sN . Note

9
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that HMM, Λs1:sN is obtained by joining HMM models of the sub-word units

s1, s2, · · · , sN .

The observation distributions p(xt|θt) (Λ is removed for convenience)

are typically modeled using Gaussian mixture models (GMMs), parameterized

by mean vector µ and covariance matrix Σ for each θt. Jointly, this is referred

to as HMM–GMM acoustic model for speech recognition. More recently, deep

neural networks (DNNs) are used to estimate the observation probabilities. In

the DNN framework, a multi-layer perceptron is trained to classify states (θt),

given the input speech feature vector θt. The trained neural network is used to

compute the likelihood (p(xt|θt)) as follows:

p(xt|θt) ≈ p(θt|xt)/p(θt) (2.8)

where p(θt|xt) is softmax output of the DNN and p(θt) is prior probability of

state, estimated from Viterbi alignments.

2.1.3 Search

Finding the best word sequence given observation sequence uses the

MAP criterion shown in equation 2.3. A brute force application of equation

involves first enumerating all possible word sequences. Likelihood of a word

sequence generating the given observation sequence is computed by summa-

10
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tion of probabilities of possible state sequences generating the observation se-

quence. This acoustic model term is then scaled with the prior of word se-

quence (given by language model term) and the word sequence with the maxi-

mum score is chosen as the MAP solution. The best word sequence is usually

referred to as 1-best hypothesis. Only in simple ASR tasks, the above men-

tioned approach is feasible and in large vocabulary continuous speech recogni-

tion (LVCSR) more tractable solutions are used in practice. In order to simplify

the search problem the following approximation is used:

ŵ = arg max
w ∈ G

p(X | w) p(w) (2.9)

= arg max
w ∈ G

 ∑
θ(s1:sN )

T∏
t=1

p(xt|θt) p(θt|θt−1)

 p(w)

 (2.10)

≈ arg max
w ∈ G

([
max

θ(s1:sN )

T∏
t=1

p(xt|θt) p(θt|θt−1)

]
p(w)

)
(2.11)

This is known as Viterbi approximation. The assumption here is that

likelihood of the best path through the HMM network dominates summation

of the above equation. Therefore it is adequate to approximate the summa-

tion term. The search problem is further simplified by employing hypothesis

pruning techniques like beam pruning [10,11].

11
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2.2 Noise Robustness of ASR systems

Historically, applications of ASR technology include telephone call rout-

ing, voice based dialing, dictation systems in medical and legal domains etc. All

these applications only allow users to interact with the machine in restrictive

settings. That is, the technology used to work only in a limited-vocabulary sce-

narios, where the user needs to utter clear, well articulated speech and in noise-

free office settings. With the availability of large datasets and computation

power, ASR technology has advanced to the stage where more challenging ap-

plications are now possible. Digital voice assistants like Amazon Echo, Google

Home, etc are examples of device which allow users to interact in noisy, far-field

environments. Voice based interaction is also available in mobile phones (e.g.

Siri on iPhone etc). In order to tackle the large-scale, real-world applications,

ASR technology needs to be robust to varying acoustic environments.

Given the vast number of applications for ASR systems, it is impera-

tive to make ASR technology more robust to acoustic variability. In the follow-

ing section we provide mathematical formulation of what it means to be noise

robust. To make the explanation easier, we refer to training acoustic conditions

as “clean” and mismatched speech signal as “noisy”. Consider the following

example: Let Y denote noisy speech signal and X denote corresponding clean

12
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version. The MAP equation to estimate ŵ is given by

ŵY = arg max
w ∈ G

p(Y | w) p(w) (2.12)

So for ŵY to be equal ŵX, we want the same acoustic model likelihoods p(Y |w) =

p(X | w). This equation suggests that in order for an ASR system to produce

the same word sequences for clean and noisy conditions, acoustic model needs

to be robust to noise and acoustic mis-matches.

The approaches to noise robustness can be grouped into two categories:

(i) feature space and (ii) model space.

2.2.1 Feature space approaches

Many approaches in this space are motivated by the noise robust abil-

ity of human speech recognition (HSR) and try to mimic properties of HSR.

Even widely used features such as perceptual linear prediction (PLP) [12] and

Mel frequency cepstral coefficient (MFCC) [13] features approximate mecha-

nisms observed in human ear (cochlea). In the case of PLPs, Bark filter-banks,

loudness equalization and cubic root compression are examples. In the case of

MFCCs, Mel filter-banks approximate non-linear frequency resolution observed

in cochlea. Gammatone features use Gammatone filter-banks, which are better

at approximating filters observed in ear. Features like RASTA PLP [14], Gabor

13
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features [15] and spectro-temporal features [16] are motivated by higher-order

processing in human auditory cortex. Works [17–20] observed that temporal

modulations above 25 Hz are not informative for perceiving human speech,

which motivates the temporal filter of 1–12 Hz used in RASTA processing. Ga-

bor and spectro-temporal features uses multiple spectral and temporal filters

during the feature extraction stage. Several other techniques, which can also

be categorized into feature space, attempt to enhance speech by subtracting

the noise. Examples of these approaches are minimum mean square error [21],

Weiner filtering [22, 23], etc. These techniques assume a noise model (addi-

tive or/and convolutive) and attempt to filter out the noise. The key difference

between techniques in this group is type of noise model assumption and esti-

mation. Other features such as zero crossing peak amplitude [24], average lo-

calized synchrony detection [25], perceptual minimum variance distortionless

response [26] etc are motivated by empirical observation.

2.2.2 Model space approaches

The central idea in noise robust ASR is to create an acoustic model

which is invariant to noise, i.e. pΛ(Y | w) = pΛ(X | w). Feature space ap-

proaches achieve this by extracting features such that Y ≈ X. In contrast,

model space approaches modify the parameters of the acoustic model directly.

14
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Consider the case where reference transcription of test utterance is available.

Then adapting the model to increase pΛ(Y | w) will increase the accuracy.

Since reference transcriptions are not available, most model adaptation meth-

ods consider a 2-pass approach: Decode the test utterance to obtain a 1-best

hypothesis, and treat the 1-best hypothesis as true transcript and modify the

model parameters. Most model space methods differ in re-estimation of model

parameters. The popular approach is to use maximum likelihood estimation

method [27, 28]. Discriminative methods have also been explored [29–31], but

these tend to be sensitive to hypothesis errors [32]. Since the amount of data

used for re-estimation step is small, only a subset of the parameters are modi-

fied. Widely used example of MLE approach is maximum likelihood linear re-

gression (MLLR) [27] (and its variant feature-space maximum likelihood linear

regression (fMLLR) [28]). Several other approaches like parallel model com-

bination [33], model-domain vector taylor series [34], Stereo-based Piecewise

LInear Compensation for Environments [35] etc. Most of these methods as-

sume some knowledge about the noise at hand.

Compared to feature based approaches, these approaches typically achieve

higher accuracy. However these are computationally expensive, as they in-

volve decoding twice (one for transcription generation and one after parameter

re-estimation to obtain final hypothesis), and running an extra expectation-
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maximization step. These drawbacks make practical applicability of model

based approaches challenging.

2.3 Noise robust approaches in DNN

acoustic models

In a HMM – GMM acoustic model the observation probabilities (p(xt|θt))

are obtained by a GMM, and the transitions (p(xt|θt)) are modeled by an HMM.

Unlike a GMM which is a generative model which model likelihoods directly,

neural networks are discriminative models which can only model posterior

probabilities (p(θt|xt)). The network is trained to predict the posterior prob-

abilities, which are converted to likelihoods using the following Bayes rule:

p(xt|θt) ≈ p(θt|xt)/p(θt) (2.13)

where the priors p(θt) are obtained from training data. Plugging in the above

terms in acoustic model equation

p(X | w) =
∑
θ

T∏
t=1

p(xt|θt) p(θt|θt−1) (2.14)

≈
∑
θ

T∏
t=1

p(θt|xt)
p(θt)

p(θt|θt−1) (2.15)
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where q(θt|xt) is posterior probability state, obtained from softmax output of

the neural network. For a noisy signal Y, the conditional likelihood becomes

p(Y | w) ≈
∑
θ

T∏
t=1

p(θt|yt)
p(θt)

p(θt|θt−1; Λ) (2.16)

From these equations, it is evident that for improving noise robustness of neu-

ral network based acoustic models, posterior probability obtained from noisy

speech and clean speech should be as close as possible. That is, p(θt|yt) =

p(θt|xt).

Noise robust techniques in category 1 are directly applicable for neu-

ral network based models. In these cases, the assumption is that the extracted

features are invariant to acoustic distortions (i.e. Y ≈ X). Due to continuity

of parameter space of neural networks, this in turn makes p(θt|yt) ≈ p(θt|xt).

The success of techniques in these categories depend on how well we can ex-

tract features which are invariant to distortions. Application of techniques in

category 2 is more challenging as little success is found in modifying the pa-

rameters to an unsupervised cost function. But techniques like feature space

MLLR or cMLLR which modifies mean of GMM to maximize the likelihood is

applicable. Modifying the mean via linear transform is equivalent to modifying

the features. The adapted features can be treated as regular features and pro-
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vided as input to neural network. These features are shown to be robust [36,37]

to acoustic mismatches.

One of the most used approach is to provide channel or noise informa-

tion as an additional input to the network. In [38] use iVector [39] along with

filter-bank features to train the model. The assumption is an iVector capture

channel information implicitly. Explicit specification of noise information as an

additional input is also explored in [40]. However, most dominant approach to

improve noise robust of DNN acoustic models is train on artificially corrupted

speech. Several works have shown that robustness can be increased by just

training the network on speech corrupted with artificial noises [37,41]. The ob-

served improvements can be attributed to ability of neural networks to ingest

large amounts of highly variable data.

2.4 Scope of the thesis:

In this thesis, we use “multi-stream” approach to address noise robust-

ness of ASR systems. Multi-stream speech recognition provides an intuitive

way to improve robustness of ASR systems to acoustic mis-matches. In this

framework, several streams of information are extracted from the speech sig-

nal, and these streams are adaptively fused to improve noise robustness. The

fundamental motivation behind multi-stream recognition is that noise or en-
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vironmental distortion effects only few streams. The streams which are less

corrupted can be identified and decisions from these streams can be empha-

sized.

In previous sections, we provided a brief description of past noise ro-

bust techniques. Most of the techniques perform well only in few noise condi-

tions, and there is no universally accepted noise robust technique which works

on all possible acoustic distortions. For example, RASTA filtering is shown to

be robust to linear, convolutive distortions observed in telephone channels [14],

Weiner filtering is shown to be robust to additive noisy conditions [22] etc.

Multi-stream approach can be used to solve this issue. For example, we can

construct a 2 stream system with one stream being RASTA features and other

stream being Weiner filtered features. If the test signal is corrupted by convo-

lutive distortion we can use RASTA stream, and if it is corrupted by additive

distortion we can use Weiner filtering stream. This 2 stream system has the

potential of being robust to both convolutive and additive distortions.

Therefore, in order to build a successful multi-stream system one needs

to deal with the following three issues [42]:

• Formation of streams: streams which are conditionally independent as

much as possible, while retaining some cues for recognition of message.

• Identification of streams: accurate identification of streams that are
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less corrupted for a given test signal.

• Fusion of streams: finding combination of streams which gives the best

result.

In this thesis we propose techniques to improve stream fusion part of multi-

stream system.
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Chapter 3

Multi-band acoustic model

In this chapter the proposed multi-band acoustic model is presented.

The proposed neural network model combines sub-band specific architecture

idea from past multi-band studies with dropout. Resulting model provides sig-

nificant performance improvements in various noisy speech recognition tasks.

3.1 Overview of past multi-band

approaches

The basic idea of multi-band ASR can be summarized as follows:
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• Divide speech signal into several sub-bands: Each band should focus

on narrow frequency region of input speech signal. This ensures localiza-

tion of noise to a few bands and independence of features from each band.

• Extract acoustic features in each band: Acoustic features which cap-

ture energy envelope are extracted in each the sub-bands. Most multi-

band systems [43–46] implement this as follows: Short-time Fourier anal-

ysis of input speech signal is first performed with a frame size of 25 ms and

frame shift of 10 ms. In each frame, Mel scale [13] or Bark scale [12, 47]

filterbank energies are computed by frequency warping power spectrum

of short-term signal. The filterbank energies are then grouped into 5 or

7 groups, where energies in each group correspond to a specific critical

band. The energies in each group form acoustic features for the sub-band.

• Train independent recognizers: In each sub-band a recognizer is trained

on acoustic features from that band. Since each sub-band only sees fea-

tures from that sub-band, it is unaffected by noises which corrupt other

bands. Studies [45,46] used GMM-HMM based ASR systems in each sub-

band. However, most studies focused on using ANN-HMM models [43,44].

Since ANNs can deal with correlated feature representations, they make

ideal candidates for sub-band recognizers. Several ANNs (one for each

sub-band) are trained to predict the phoneme class of the current frame.
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• Combine decisions from the sub-band recognizers: Accuracies ob-

tained from individual sub-band recognizers are far from optimal as each

system operates on partial information. Works [48] combine the infor-

mation from the individual recognizers by averaging the output posterior

probabilities of the neural networks. While averaging, the weights can

also be non-uniform and test speech signal dependent as shown in [48]. A

drawback of posterior fusion approaches is poor performance observed in

clean and non-localized noisy conditions. This is due to sub-optimal (i.e.

weighted average) combination of information in the sub-bands. A bet-

ter approach, proposed by [43], is to concatenate posteriors of each band

and the concatenated vector is used as input feature to train one more

network to classify phoneme. This approach significantly improves the

performance and has been employed in several other multi-band/multi-

stream works [49].

Figure 3.1 shows an example multi-band architecture, which encapsu-

lates all the points mentioned above. The frequency spectrum of input speech

signal is divided into 5 sub-bands and Mel filterbank features are extracted

in each band. A neural network is trained separately in each band resulting in

five stage1 networks. Posteriors (or bottleneck features, TANDEM features) are

extracted from each of the 5 networks (represented by h1,h2, · · ·h5 in fig. 3.1).
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concatenated	sub-band
bottleneck	feats

Figure 3.1: Block diagram of conventional multi-band acoustic model with 5
sub-bands. The system consists of 2 stages. Stage1 consists of several (5 in this
case) independent networks, operating on each sub-band. Network in stage2
merges decisions from the first stage networks.

These features are concatenated to form input representation for stage2 net-

work.

3.2 Proposed multi-band system new

This work proposes a new technique to train multi-band model shown

in Fig. 3.1. In order to better explain the training technique, we refer h1,h2, · · · ; hN

as feature vectors of the N sub-bands. For example, hi is bottleneck vector of

ith sub-band network and hi’s can be of non-uniform dimensionality. Typically,

for a standard multi-band system, the features are concatenated and given as

input to the network. That is, the concatenated vector h = [h1; h2; · · · ,hN ] is

used as input to the network. However, for the stream-dropout training, we
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Figure 3.2: Schematic of proposed multi-band acoustic model. Stream-dropout
is applied on features from each band and concatenated to form input to stage2.

concatenate the feature vectors as follows:

h̃ = [z1h1; z2h2; · · · ; zNhN ] (3.1)

where each zi is a scalar and binary valued. zi is referred to as binary mask or

simply mask. Fig. 3.2 illustrates the concatenation procedure described above.

The concatenated feature vector is then presented as input to the network.

During training of the network, each mask (zi, i = 1 · · ·N ) is an inde-

pendent Bernoulli random variable. That is zi can take value 0 or 1 with some

probability p. Unless otherwise stated, we use p = 0.5 for all the masks. For

N = 2, the network sees one of the following 3 input patterns in the training
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stage:

h̃ = [h1; h2] or

h̃ = [0; h2] or

h̃ = [h1; 0]

whereas for N = 3, the network sees one of the following 7 input patterns:

h̃ = [h1; h2; h3] or

h̃ = [0; h2; h3] or

h̃ = [h1; 0; h3] or

h̃ = [0; 0; h3] or

h̃ = [h1; h2; 0] or

h̃ = [0; h2; 0] or

h̃ = [h1; 0; 0]

For a system with N -streams, number of possible patterns are 2N − 1.

During test, no dropout is applied. That is all the dropout masks (zi’s)

are set to 1. The network can be treated as a regular, non-dropout network.
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3.3 Why stream-dropout helps?

Previous section described the proposed training algorithm for a multi-

band system. In this section we analyze the effect of noise on this system to

understand why stream-dropout improves noise robustness of multi-band sys-

tem. Finally, we compare the performance of proposed multi-band system with

baseline systems.

3.3.1 Multi-band setup:

Acoustic features: Short-term Fourier analysis of input speech signal is per-

formed with a frame size of 25 ms and frame shift of 10 ms. Per frame, 63 Mel

filterbank energies are extracted covering the frequency range of 0 – 8000 Hz.

The 63 Mel bands are separated into 5 groups, with each group representing

a sub-band. Each sub-band group covers 10, 10, 11, 12, and 21 Mel windows

respectively. A 11 frame temporal context is used as feature representation in

each band. The context features from Mel windows of the 5 groups form the

input acoustic features for the 5 sub-band networks.

Stage1 networks: Each sub-band net consists of 2 hidden layers with 1500

ReLU units. This is followed by a bottleneck layer of size 40 and a final soft-

max layer. The 5 sub-band nets are trained independently of each other to

optimize cross-entropy loss criterion. Targets for the cross-entropy loss are
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Figure 3.3: Comparison of sub-band feature values for a clean signal and its
noisy versions. In each plot, solid (‘—’) line and dashed (‘– –’) line corresponds to
histograms clean and noisy feature values, respectively. A column shows spe-
cific band-limited noise type and histograms of 3 different feature dimensions
are shown in each noise type.
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obtained from a GMM-HMM model. The GMM-HMM system is trained on

speaker adapted MFCC features [36]. ∼2300 tri-phone PDF targets are gener-

ated from the GMM–HMM model which are used as targets for all the sub-band

nets.

Stage2 networks: After training each sub-band network, the final softmax

layer is removed. Bottleneck features are extracted from each of the sub-band

net, and they are concatenated. The resulting 200 dim (5 × 40) concatenated

feature vector is used as input to stage2. The stage2 network consists of 4

hidden layers with 1500 ReLU units in each layer. Previous works [2, 44, 49]

in multi-band transformed final softmax outputs and used them as features

for stage2. We prefer to use bottleneck features here because, unlike the works

[2,44,49], the stage1 networks in this work are trained on senone targets rather

than phoneme targets. Senone targets has much higher dimensionality and re-

quires LDA or PCA to reduce the dimensionality prior to concatenation. We

observed that LDA or PCA based dimensionality reduction causes significant

information loss, and bottleneck features are easier to model for stage2 net-

works.
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3.3.2 Effect of noise on sub-band features

In order to analyze the behavior of proposed system, we created syn-

thetic noisy test sets. These test sets are created by adding band-limited noises

to clean test signals of Aurora4 test set. We chose band-limited noises, which

corrupt low-frequency (500 – 875 Hz), mid-frequency (875 – 1375 Hz) and high-

frequency (2000 – 3125 Hz) of input speech signal. Each signal of Aurora4

clean test set is corrupted by the 3 band-limited noises at 0 and 10 dB signal-

to-noises. This resulted in 6 variants of original clean test set. We used multi-

condition training set of Aurora4 to train the models. The training set consists

of 14 hours of multi-condition data, sampled at 16 kHz.

Figure 3.3 shows histograms of several features from sub-band net-

works, for a clean signal, and its corresponding noisy versions. It can be seen

from the figure that histograms of noise signal more centered around zero and

have less dynamic range compared to the corresponding clean version. For ex-

ample, in the first plot of the figure, clean feature value ranges from -8 to 5.

Whereas, its noisy version ranges from -2 to 2. This shows that due to presence

of noise, feature values towards zero. Since the network in stage2 encounters

features with zero values in training, the noisy test utterance is no longer an

unseen sample.

Also, this improves prediction accuracy of the network as seen in Fig-
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ure 3.4. The figure shows WER results of baseline DNN, baseline multi-band

and proposed multi-band models. The models are evaluated in clean and the 3

band-limited noisy conditions at 0 and 10 dB SNRs. It can be observed from the

figure that proposed stream-dropout technique results in a model which consis-

tently performs better than baseline multi-band. In some noises and SNRs, the

proposed system results in more than 35 % relative reduction in WER. Note

that the improvement is only due to stream-dropout training as all other vari-

ables (i.e. number of parameters, input features, training targets, training cost

function etc) in model training are same.

It can also be observed from the figure that both baseline and proposed

multi-band models perform significantly better than a fully connected DNN in

all the 3 band-limited noisy conditions. The multi-band systems resulted in

more 50 % relative reduction in WERs in the band-limited noises, illustrating

that for localized noises multi-band systems can outperform traditional mod-

els. This shows when test noises match the multi-band assumption, significant

performance improvements can be achieved.
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Figure 3.4: Comparison of WERs (%) of baseline DNN, baseline and proposed
multi-band models. All the models are evaluated in clean test and band-limited
noisy conditions.

3.4 Speech recognition experiments

with real noises

In previous section, we showed that adding stream-dropout and joint-

training techniques to multi-band network results in a better performing sys-

tem in clean and band-limited noisy conditions. In this section, we evaluate

the performance of multi-band system in realistic noises. This is to demon-

strate that improvements observed in previous section is not limited to syn-

thetic band-limited noises and can be observed even in more real world noises.

We used Aurora4 and ASpIRE [50] speech recognition tasks.
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Table 3.1: WER (%) results of baseline and proposed systems in Aurora4 test
conditions.

DNN Multi-band
baseline proposed

Clean Same Mic
clean 4.2 3.9 3.9

Clean Diff. Mic
clean 11.7 9.6 6.3

Additive Noise Same Mic
airport 6.7 5.7 5.0
babble 6.9 5.7 5.3
car 4.6 3.8 3.4
restaurant 10.0 8.6 7.3
street 10.2 7.6 6.9
train 10.1 8.3 7.5
Avg. 8.1 6.6 5.8

Additive Noise Diff Mic
airport 21.3 16.2 14.0
babble 22.2 16.6 15.2
car 14.6 10.3 8.5
restaurant 23.6 19.2 17.4
street 24.6 19.7 18.6
train 24.5 21.1 18.0
Avg. 21.8 17.2 15.2
Overall Avg. 13.6 10.9 9.6

3.4.1 Aurora4

We use Aurora4 speech database for building the ASR models. The

database is based on the DARPA Wall Street Journal (WSJ0) corpus which con-

sist of clean recordings of read speech, with a medium vocabulary size of 5000

words. The training set consists of 14 hours of multi-condition data, sampled at

16 kHz. The 14 hours of data is comprised of 7137 utterance from 83 speakers.
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Half of the utterances were recorded by the primary Sennheiser microphone

and the other half were recorded using one of a number of different secondary

microphones. Both halves include a combination of clean speech and speech

corrupted by one of six different noises (street traffic, train station, car, babble,

restaurant, airport) at 10-20 dB signal-to-noise ratio. The test set consist of

14 conditions, with 330 utterances for each condition. The conditions include

clean set recorded with primary Sennheiser microphone, clean set with sec-

ondary microphone, 6 additive noise conditions which include airport, babble,

car, restaurant, street and train noise at 5-15 dB signal-to-noise ratio (SNR)

and 6 conditions with the combination of additive and channel noise. Note that

both training and test sets have same noise conditions, but they differ in SNRs.

Table 3.1 shows performances of DNN, multi-band and multi-band+stream-

dropout systems. It can be seen from the table that multi-band system (compar-

ing columns 2 and 4) outperforms DNN system in all the conditions. We observe

a 18–21 % relative reduction in WER in noisy conditions by using multi-band

system instead of a DNN system. Across all conditions, using multi-band sys-

tem resulted in WER which is 20 % (relative) lower than baseline DNN. We

observed further improvements by using multi-band+stream-dropout system.

It can be observed from the table that (comparing rows 3 and 4) proposed sys-

tem improves performance in all acoustic conditions. Overall stream-dropout
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reduces the WER from 10.9 % to 9.6 % (11 % relative reduction).

3.4.2 ASpIRE

The training data for ASpIRE task is based on English portion of

Fisher corpus [51] (LDC2004S13, LDC2005S13). Multi-condition corpus was

created by distorting original Fisher corpus, with real world room impulse re-

sponses (RIR) and noise recordings from 3 different databases, the Real World

Computing Partnership (RWCP) sound scene database [52], the REVERB chal-

lenge database [53] and the Aachen impulse response database [54]. A total of

325 multi-channel recordings of RIRs were selected from the three databases.

Three different copies of each recording in Fisher corpus were created by ran-

domly sampling three different RIRs. This procedure resulted in 5500 hours of

training data. A 1000 hours subset of this is selected to train the models. We

evaluated the performance in dev set of 5 hours, which are provided as part of

ASpIRE challenge [50]. dev set is collected by recording 10 minute telephone

conversation between Native American English speakers, on a predefined topic.

15 microphones were installed in the room to collect far-field recording. More

details of the dev set can be found in [50].

Convolutional neural networks have shown to provide significant per-

formance improvements over fully connected networks in various vision and
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speech tasks. The reason for the improvement is due to better feature detectors

of convolution operation and translation invariance offered by pooling layers.

CNNs used in speech recognition consists of 2-3 convolutional layers followed

by fully connected layers. Unlike vision tasks, where a two-dimensional convo-

lutional operation is used, CNNs in speech only employ frequency convolution.

It has been hypothesized that frequency convolution, along with pooling layers

offer robustness to pitch differences between speakers [55].

In this section, we explore the possibility of using CNN layers to ob-

tain better sub-band features. In conventional CNNs, the number of filterbank

features each convolutional layer sees in the range of 40-60. We cannot employ

frequency convolution in multi-band architecture as the number of filterbanks

are in the same range of filterwidth. Instead of frequency convolution, we pro-

pose to use time convolution in each band. The networks in each band consist

of two convolutional layers, operating on sub-band filterbank features, with 21

frame context. Delta+acceleration features are also used with original filter-

bank features. The first CNN layer uses a width of 4 filterbanks and with a

step size of 1. This is followed by a max-pooling layer, with pool size 2. The

second CNN also employs filter of width 4 and step size of 1. The second CNN

is followed by a projection layer, which reduces the dimensionality of features

to 40. We apply a stream-dropout to each of these 40 bottleneck features and
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Table 3.2: Comparison of WERs of various baseline models and proposed of
multi-band model. The models are trained on 1000 hr Fisher corpus.

ASpIRE dev-set
1 DNN 43.6
2 CNN (freq.) 39.8
3 CNN (time) 41.8
4 Multi-band 38.9

concatenate them and provide as input to a network with 4 fully connected

layers.

Table 3.2 shows the WERs obtained from multi-band system and base-

line DNN and CNN models. Similar to Aurora4 experiments the DNN model

consists of 6 fully connected hidden layers. Each layer consists of 1500 ReLU

neurons. The DNN system is trained on 11 frame context features. The targets

are obtained from alignments from a GMM – HMM system, which is trained on

5000 hours of speech data. Note that all the neural network models are trained

on 1000 hours of speech, using frame-level cross-entropy criterion

CNN (freq.) model is a convolutional network which operates along

the frequency axis. The network consists of 2 convolutional layers followed by

3 fully connected layers. First of the convolutional layer operate on 46 Mel fil-

terbanks, with a frequency filter width of 8 points and step size of 1. This is fol-

lowed by a max-pooling layer of 3. The filter width of second convolutional layer

is 4 and step size is 1. Outputs of second hidden layer are provided as inputs a
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3 layer fully connected network. In total the network is made up of 13 million

parameters. In contrast convolution operation in CNN (time) happens along

the time axis. Number of parameters of convolutional layers in CNN (time) are

same as that of sub-band networks in multi-band networks. Output of the con-

volutional layers is provided as inputs 3 fully connected layers. The network

consists of 17 M parameters. It can inferred from the table that CNN models

perform better than regular DNN models. This could be due to sub-sampling

layers in CNN, which provide robustness to acoustic mismatches. Similar to re-

sults in Aurora4, we observed improved performance using multi-band system.

3.5 Conclusions

In this chapter, we proposed a new multi-band system. The proposed

system has the architecture similar to that of past multi-band system but by

employing stream-dropout, the parameters of the model can be jointly trained

while reducing coadaptation. We first compared proposed system in a controlled

test settings, where only few bands are corrupted. Analysis of performance in

these test sets showed that proposed system is capable of reducing coadaptation

of the model, with features across sub-bands. This resulted in significant im-

provements in the synthetic noisy test cases. We also evaluated proposed tech-

nique in Aurora4 and ASpIRE test sets, where the speech contains real noises.
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Around 10 % relative improvement in WER is observed in these test sets. This

shows that proposed multi-band performs better than baseline systems, even

in test cases which do not exactly match the assumptions of multi-band (band

localized noises).

3.6 Future work

The important hyper-parameter in a multi-band system is band-definition

(i.e. number of bands and band boundaries). The general rule of thumb is to

divide the signal into 5 – 10 sub-bands and each sub-band should cover 1 – 3

critical bands. In all the above experiments the sub-bands are defined arbitrar-

ily. A more principled approach to define the bands is required to obtain optimal

performance of multi-band system. Another direction to explore is multi-band

architecture with recurrent models. Possible approaches are: (i) replace net-

works in stage1 with LSTMs, (ii) replace stage2 network with LSTMs, (iii) ex-

tract bottleneck features from stage2 network and train a final LSTM network.

Even though option (iii) is easier implement, it is too cumbersome to perform

fast experimentation, especially on large datasets. Options (i) and (ii) are at-

tractive in this sense, but may require careful tuning of other hyper-parameters

of the model, like learning rate, number of LSTM layers etc.
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Chapter 4

New framework for

multi-stream speech

recognition system

This chapter introduces multi-stream speech processing. We provide

motivation from engineering point of view and describe past architectures. This

is followed by new multi-stream framework which uses stream-dropout tech-

nique proposed in previous chapter.
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Figure 4.1: Illustration of (a) standard neural network based acoustic model
architecture and (b) late-fusion multi-stream acoustic model architecture.

4.1 Past multi-stream architectures

4.1.1 Late-fusion multi-stream architecture

Figure 4.1 shows examples of conventional architecture and late-fusion

multi-stream architecture. Conventional architecture involves extracting a sin-

gle feature representation from the given training data. Examples of widely

used feature representations are Mel filter-bank energies [13], Critical Band

energies [47] and Mel frequency cepstral coefficients [13]. A neural network
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is trained on this feature representation. During test, the same features is ex-

tracted from the given test signal, and forward passed through the trained clas-

sifier to get phoneme (or tri-phone) posterior probabilities. The phoneme pos-

teriors are divided by the priors of each phoneme to obtain scaled likelihoods,

which are then given as inputs to decoder to estimate the word sequence. This

architecture is referred to as single-stream architecture due to single feature

representation extracted from the signal, and a single classifier.

By contrast, multi-stream architectures involve extracting multiple

feature representations from the given training data. Several neural networks

are trained, one on each feature representation. During test, the feature repre-

sentations are forward passed through the respective neural networks. This re-

sults in several phoneme posterior vectors, unlike single-stream system which

gives only one phoneme posterior vector. Frame-level posteriors from each

stream are then merged by weighted linear (or log-linear) combination or non-

linear combination using a neural network [56]. The merged phoneme posteri-

ors are used as inputs for the decoder. The main motivation behind using mul-

tiple classifiers is, each feature representation is affected by noise differently.

This results in some of the feature representations being more robust than oth-

ers in a given noise. Emphasizing posterior probabilities obtained from these

representations, by assigning higher weights, can result in more accurate pos-
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teriors. From hereon this architecture is referred to as late-fusion multi-stream.

4.1.2 Analysis

Many previous implementations of multi-stream system used sub-band

streams [56–59], i.e. each stream covers only few frequencies. More general

ways forming streams have also been studied. These include streams cover-

ing different portions of temporal modulations [60, 61], spectro-temporal (2-D)

modulations [62–64], etc.

We first demonstrate robustness of late-fusion multi-stream system

using a 2 band system. The two sub-band streams are computed as follows:

Log-Mel filterbank features spanning frequency range of 0 – 16000 Hz, are

computed from the speech signal. In each Mel band, TRAP features [60] are

computed by taking DCT transform over a temporal context of 11 frames. The

resulting TRAP features are grouped into Bark critical bands. Mel bands cover-

ing first 12 Bark bands are assigned to first stream. The remaining Mel bands

features are assigned to second stream.

ASR system

A hidden Markov model-deep neural network (HMM-DNN) based ASR

system is trained using clean training set of Aurora4 corpus (details in 4.1.2).

43



CHAPTER 4. MULTI-STREAM: TRAINING

A hidden Markov model-Gaussian mixture model (HMM-GMM) system is first

trained to generate tri-phone targets, on Mel frequency cepstral coefficients

(MFCCs). MFCC features are transformed using linear discriminant analysis

(LDA) and maximum likelihood linear transform (MLLT). MFCC features are

spliced across 7 frames (–left-context=3, –right-context=3) and the dimension-

ality is reduced to 40 using LDA transform. The 40 dimensional LDA trans-

formed features are diagonalized using MLLT transform estimated over 12 it-

erations.

The HMM-GMM system trained on MFCC features with LDA+MLLT

transform, is used to force align (Viterbi alignments) the training acoustic data

to context dependent phoneme (tri-phone) states. We then train a deep neural

network (DNN) to estimate tri-phone state posteriors. A fully connected, 6

hidden layer DNN, with 1024 sigmoid units in each hidden layer is used for

this purpose. The DNN is first pre-trained using restricted Boltzmann machine

(RBM) algorithm [65]. It is then fine-tuned using cross-entropy cost function.

The targets used for cross-entropy are the Viterbi alignments generated from

the HMM-GMM system.
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Aurora4 data set

We used Aurora4 training set for the speech recognition experiments.

Aurora4 task is a small scale, medium vocabulary speech recognition task,

aimed at improving noise and channel robustness [66]. This corpus is derived

from the DARPA Wall Street Journal (WSJ0) 5000-word closed vocabulary dic-

tation task.

Training set: The clean training set consist of 7,138 utterances recorded using

Sennheiser HMD-414 close-talking microphone. These correspond to roughly

15 hours of speech data, from 83 speakers, sampled at 16000 Hz. Along with

clean training set, the database also provides multicondition training set. The

multicondition training set consist of the same 7,138 utterances filtered using

several different microphones and corrupted by adding various noises. Compo-

sition of this set is as follows: 3569 utterances (half) recorded with the Sennheiser

microphone, and the remaining half recorded with a different microphone (18

different microphone types were used). No noise is added to one-fourth (893 ut-

terances) of each of these subsets. To the remaining three-fourths (2676 utter-

ances) of each of these subsets, 6 different noise types (car, babble, restaurant,

street, airport, and train) were added at randomly selected SNRs between 10

and 20 dB. The goal was an equal distribution of noise types and SNRs. Thus,

the multicondition dataset consist of one clean set (893 utterances) and 6 noisy
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Figure 4.2: Comparison of spectrograms of clean speech and speech corrupted
by band-limited noises.

subsets (446 utterances each) for both the microphone conditions.

Band-limited test set: The clean test set of Aurora4 (test eval92 set) consist of

330 utterances recorded using Sennheiser microphone. Variant of the clean test

set is created by artificially adding band-limited noise at 10 dB signal-to-noise

ratio. Figure 4.2 (a) shows spectrogram of a clean speech, where as figure 4.2 (b)

shows spectrogram of the same signal corrupted by the artificial band-limited

noise. As we can see from the figure, the band-limited noise corrupts only few

frequencies, ranging from 500–1000 Hz. This effects stream 1, whereas stream

2 is is mostly unaffected.
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Table 4.1: Comparison of single-stream and late-fusion multi-stream systems,
in band-limited noise and clean conditions.

band-limited clean
1 single-stream 34.4 3.0
2 sub-band 1 76.2 7.6
3 sub-band 2 7.5 4.5
late-fusion multi-stream
4 w=[1/2, 1/2] 19.0 4.0
5 w=[0.0, 1.0] 7.5 4.5

Results

Table 4.1 shows comparison results between single-stream system and

late-fusion multi-stream system. Row 1 of the table shows WERs obtained

from the single-stream system. It is evident from the table that performance of

single-stream system degrades significantly even though only a small portion

of the spectrum is corrupted by noise. The reason for the degradation might

be due to low signal-to-noise ratio (10 dB) of band-limited noise. Rows 2 and

3 of the table show WERs of network trained on sub-band 1 and sub-band 2.

It is evident from the table that localized noise does not effect performance of

sub-band 2.

Rows 4 and 5 of the table show WERs obtained from late-fusion multi-

stream system. The two streams in the system are combined as shown in the

figure 4.1b. That is, at each frame sub-band features corresponding to each

stream are forward passed through the respective neural networks to obtain
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frame level posteriors. Final posterior vector is computed by combining poste-

rior vectors of each stream. We use weighted sum combination rule to combine

the posteriors, given by the following equation

pct =

5∑
i=1

wi pit (4.1)

where pct is combined posterior vector at time t, pit is posterior vector of ith

stream at time frame t, and wi is weight associated with stream-i. The results

in row 4 of table 4.1 are obtained by assigning equal weights to all the streams.

The systems in rows 1 and 4 are conceptually similar, in the sense that both

the systems use all the information present in the input signal. In row 1, the

information is fused at the early stages (feature level) and in row 4 the infor-

mation is fused late, at the posteriors. It can be observed by comparing rows 1

and 4 that late-fusion of streams result in more robust posteriors compared to

early fusion.

Performance of late-fusion multi-stream system can be further im-

proved by using the knowledge of which streams are robust in the given test

condition. In the present case, we have the knowledge that band-limited noise

corrupts only sub-band 1. Row 5 shows the WERs obtained by assigning zero

weight to sub-band 1. From the table, we can conclude that further improve-
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ment to the performance can be obtained with the knowledge of which streams

are corrupted.

Last column of table 4.1 show the WERs obtained in clean condition.

It is evident from the table that single-stream system clearly outperforms late-

fusion system in clean condition. The reason for this is, single-stream system

models features of several streams jointly, thereby accounting for joint infor-

mation present in the signal. Whereas, in late-fusion multi-stream system,

each stream is considered independent of the other. The linear late-fusion of

streams, obtained by weighted averaging of streams is not as powerful as non-

linear fusion of features using a neural network. There is a clear trade-off in

terms of robustness to mismatch data vs clean (matched) data, between single-

stream and late-fusion multi-stream systems. Single-stream system performs

better in clean (matched) data, whereas late-fusion multi-stream system is

more robust to mismatches. In next section, we describe another multi-stream

architecture which address the drawbacks of late-fusion multi-stream system.

4.1.3 Full combination multi-stream

architecture

Figure 4.3 depicts the block diagram of a multi-stream system, similar

to the one used in [2]. For simplicity, we illustrated a system with 2 streams.
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Figure 4.3: Block diagram of full combination multi-stream system, based on 2
sub-bands. The architecture is similar to 7 sub-band architecture used in [1,2]

The principle can be extended to any number of streams. Speech signal is di-

vided into two streams. All non-empty combinations of the streams are formed,

resulting the 3 feature representations. Three separate neural networks are

trained, one for each feature representation.

Analysis

Row 6 of table 4.2 shows WERs of full combination multi-stream sys-

tem in clean and band-limited noisy conditions. It can be observed from the

table that full combination system retains the robustness of late-fusion multi-

stream system, without any degradation of performance in clean condition. The

reason for better performance of full combination system is, we used the knowl-

edge of best streams in order to obtain the results of the table. That is, in clean
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test, we used neural which have both the streams (middle neural network in

figure 4.3). Whereas in band-limited noisy conditions, we used stream which

has only high frequency features (top neural network of figure 4.3).

4.1.4 Drawback of full-combination system

In order to build a robust multi-stream system, it is necessary to in-

clude as many streams as possible. However increasing the number of streams

results in significant increase in the number of networks in the system. For

example, a 5-stream system consists of (31 (25−1+5)) networks, and a 9-stream

system consists of (511 (29 − 1+ 9)) networks. This creates a trade-off between

robustness and complexity, which can create a road block for practical applica-

tion of multi-stream system. In the next section, we show that stream-dropout

can be used to significantly reduce the complexity of multi-stream system.

Table 4.2: Comparison of full combination multi-stream system with single-
stream and late-fusion multi-stream systems.

band-limited clean
1 single-stream 34.4 3.0
2 sub-band 1 76.2 7.6
3 sub-band 2 7.5 4.5
late-fusion multi-stream
4 w=[1/2, 1/2] 19.0 4.0
5 w=[0.0, 1.0] 7.5 4.5
6 full combination multi-stream 7.5 3.0
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4.2 How does stream-dropout help multi-stream?

The basic premise of multi-stream approach is acoustic mis-match cor-

rupts only few streams and removing these noisy streams can improve perfor-

mance of the system. For example, car noise typically corrupts low frequency

portion of the signal. So in a multi-stream system, with streams as sub-bands,

not using streams corresponding to low frequency portions is better than us-

ing all the streams. The information from unreliable streams are removed in

full combination system by selecting networks which are not trained with these

streams.

In multi-stream with stream-dropout, the noisy streams are removed

by zeroing-out or dropout, i.e. multiply with zero, features from them. Since

stream-dropout networks already sees input vector with a portion of it being

zeros during training, the network does not breakdown by dropout of noisy

streams. We also hypothesize that the network can be tuned to perform compa-

rable to full combination multi-stream system. If stream-dropout multi-stream

performs atleast equal to full combination multi-stream, we can achieve a sig-

nificant reduction in the number of parameters used to build a multi-stream

system.
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4.3 Full combination vs stream-dropout

In this section, we compare performance of stream-dropout and full

combination multi-stream systems. Aim of the experiments is to study whether

we can replace multiple neural networks in full combination systems with a

single network trained using stream-dropout. For this purpose, we use sub-

band streams. We hypothesize that the conclusions can be valid for other type

of streams as no assumption about the type of acoustic features is used.

As described previously, full combination (FC) system consists of 2

stages. The first stage involves processing each sub-band stream independently

and deriving sub-band features. In most of the previous works [44,67], phoneme

posteriors (or pre-softmax outputs known as TANDEM) are used as sub-band

features. In the second stage, all non-empty combinations of sub-band features

from stage 1 are formed and an MLP is trained for each combination. Along

with reducing multiple MLPs in the second stage, we demonstrate that 2 stage

architecture can also replaced by a single network.

4.3.1 Full combination system

We compare full combination and stream-dropout based multi-stream

systems using a multi-band system. Aurora4 [66] database is used for training

and evaluation purposes.
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Figure 4.4: Architecture of full combination (FC) multi-stream system.

The architecture of FC system is shown in Fig. 4.4. Broadly, the sys-

tem pipeline consist of 2 stages. The first stage involves extraction of features

from sub-band streams and processing them. Formation of sub-band streams is

based on Bark critical bands [47]. We used a 5 stream system with each band

covering 3 Bark critical bands. The extraction of sub-band streams from the

signal is as follows: We extract 63 dimensional Mel filter-bank energies, rang-

ing from 0 to 8000 Hz. The 63 Mel bands are grouped into streams based on

which Bark critical band [47] they belong to. The peak of Mel triangular filter

is used as criterion for grouping the bands. In each Mel band, a temporal tra-

jectory of 11 frames is transformed using a DCT with 6 basis. This results in 6

dimensional feature vector for each Mel band and a 378 (63 × 6) dimensional

feature vector at every time frame.

As shown in Fig. 4.4, one neural network is trained for each stream.
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The targets used to train these networks are obtained from a GMM – HMM

system. A mono-phone GMM – HMM model is first initialized with means

and covariance of all the Gaussians equal to global mean and covariance of the

training data. This is referred to as flat-start initialization. Mel frequency cep-

stral coefficients (MFCCs) with deltas and acceleration features are used for

building GMM – HMM models. The parameters of the mono-phone model are

reestimated using 3 or 4 iterations of expectation – maximization (EM) algo-

rithm. A tied tri-phone model is initialized by copying the parameters from the

corresponding mono-phone model. Parameters of the tri-phone GMM – HMM

is reestimated by using EM algorithm. MFCC features are transformed using

linear discriminant analysis (LDA) and maximum likelihood linear transform

(MLLT). MFCC features are spliced across 7 frames (–left-context=3, –right-

context=3) and the dimensionality is reduced to 40 using LDA transform. The

40 dimensional LDA transformed features are diagonalized using MLLT trans-

form estimated over 12 iterations. The HMM-GMM system trained on MFCC

features, transformed using LDA+MLLT transform, is then used to force align

(Viterbi alignments) the training acoustic data to context dependent phoneme

(tri-phone) state. The resulting alignments are used as targets to train neural

network models.

Architecture of the networks consist of 2 hidden layers with 1500 sig-
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moidal units, followed by a linear bottleneck layer with 40 neurons and a final

softmax layer with 2037 units. The networks are trained using mini-batch

stochastic gradient descent (SGD) algorithm. Once the network is trained,

features from the bottleneck layer (40 dimensions per stream) are extracted.

The bottleneck features are used as inputs to second stage processing. This

approach is slightly different from previous full combination systems [44, 67],

which used softmax posteriors of stage 1 networks as inputs to second stage pro-

cessing. The reason for choosing bottleneck features is, unlike previous works

which used mono-phone targets (40–50), we trained the networks on tri-phone

state targets (usually 2000). Once the stage 1 networks are trained, bottleneck

features are extracted. All possible non-empty combinations (25 − 1 = 31) of

these features are formed and 31 combination networks are trained on these

features. The combination networks consist of 4 hidden layers with 1500 sig-

moid neurons. We used the same tri-phone targets as that of stage 1 networks,

obtained from GMM – HMM system.

4.3.2 Stream-dropout multi-stream system

We first show that a single network trained using stream-dropout can

be used to replace multiple networks used in full combination system, resulting

in new multi-stream architecture shown in Fig. 4.5. Next we show that first and
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Figure 4.5: Architecture of proposed multi-stream system. In this system, we
use sub-band as streams.
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second stage can be jointly trained, there by removing the need to perform the

2 stage procedure used in most of the previous multi-stream implementations

[44].

Multiple networks in stage 2 to single network:

Bottleneck features from the first stage processing of full combination

system are used to construct input feature vector for stream-dropout system.

The concatenation procedure is performed as shown in Fig. 4.5 and described

in Sec. 3.2. In this scenario, Xi represents 40 dimensional bottleneck feature

vector of stream-i. Stream-dropout network is trained by using each zi as a

binary random variable with p = 0.5.

Fig. 4.6 shows WERs of full-combination and stream-dropout multi-

stream systems for the 31 (25 − 1) possible stream combinations. Each cluster

of bars shows WERs obtained by using the stream combination shown below the

cluster. In the case of full-combination system it is the WER obtained by using

neural network trained on features defined by the stream combination. Where

as in the case of stream-dropout system, it is WER obtained by values of zi

defined by stream combination. For example, lets consider combination number

26 (binary representation of 26 = [1 1 0 1 0]). The red bar of the corresponding

cluster, in Fig. 4.6, show WER obtained from network trained on feature vector
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([h1; h2; h4]), and the blue bar shows WER obtained by SD network by forward

passing test data with h̃ = [h1; h2; 0; h4; 0; ].

From Fig. 4.6 we can observe that the performance obtained by stream-

dropout system is comparable to full-combination system in most of the stream

combinations. This demonstrates that multiple networks in full-combination

system can be replaced by a single network trained with proposed stream-

dropout training. Careful observation of the WER values show that in combi-

nations with more streams, stream-dropout system performs better than full-

combination system. Whereas in combinations with less number of streams,

performance of full-combination system is better than stream-dropout system.

This aspect is better illustrated in Table 4.3. Second column in the table show

WER of stream combination 31 (312 = 1 1 1 1 1) for SD and FC systems.

Third column of the table show averaged WERs of stream combinations with 4

streams present. That is average of streams combinations = 30, 29, 27, 23, 15.

Similarly, 3, 4, and 5 clusters show average WERs of stream combinations

with 3, 2, and 1 streams, respectively. It is evident from the figure that even

though performance of stream-dropout and full-combination systems are com-

parable, stream-dropout system’s performance is better in combinations with

more streams and worse in combinations with less number of streams. We hy-

pothesize the reason for lower performance of stream-dropout system in these

59



CHAPTER 4. MULTI-STREAM: TRAINING

Table 4.3: Comparison of full-combination (FC) and stream-dropout (SD)
multi-stream systems. Columns 2 to 6 show average WERs of stream combina-
tions. Last column shows number of parameters in the system. The systems
are evaluated in Aurora4 test set.

WER (%) # of parameters
# of streams present

5 4 3 2 1
Full-combination 10.96 12.73 16.54 26.13 55.48 432 M
Stream-dropout 9.95 11.86 16.06 26.29 53.77 72 M

stream combinations is due to relatively fewer number of examples of a partic-

ular input vector type seen during training. Also, it is important to note that

very rarely stream combinations with just 1 stream are useful, as these combi-

nations perform significantly worse than combinations with more streams.

The last column of the table shows number of trainable parameters

present in full-combination (432 M) and stream-dropout (72 M) systems. It is

evident from the table that along with comparable performance, we were able

to achieve significant reduction (6 times reduction) in the number of parame-

ters. This allows deployment of multi-stream system in resource constrained

applications like on-device speech recognition, and also train deeper models.

Joint training of stage 1 and 2:

In previous section, we demonstrated that stream-dropout training

can be used to build a multi-stream system which has significantly less com-
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Figure 4.7: Architecture of proposed multi-stream system. In this system, we
use sub-band as streams.

putational complexity than full combination system. The new multi-stream

involves a 2 stage procedure: first, acoustic features in each stream are ex-

tracted and processed by using a neural network for each stream. Then pro-

cessed features (bottleneck features or phoneme posteriors) are extracted from

each stream and a stream-dropout network is trained on these features.

The parameters learned in this architecture can be sub-optimal. This

is especially true for weights and biases of first stage neural networks, as these

are not learned in conjunction with information present in other streams. We

hypothesize that new multi-stream architecture can be further improved by

jointly training first and stage networks, as illustrated in Fig. 4.7. From fig-

ure we can conclude that the resulting neural network is deep (> number of

2 hidden layers) in nature. Previous multi-stream works [2, 44, 67] did not at-

tempt the joint training approach due to difficulty in training these network.
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Table 4.4: Comparison of full-combination (FC) and stream-dropout (SD)
multi-stream systems. Columns 2 to 6 show average WERs of stream com-
binations. Last column shows number of parameters in the system. All the
systems are evaluated in Aurora4 test set.

System WER (%) # of parameters
AVG. # of streams present

5 4 3 2 1
Full combination - 11.4 12.9 16.6 26.0 52.2 432 M
Stream-dropout (A) 24.9 10.1 12.1 16.4 26.7 54.2 72 M

Joint-training systems
Stream-dropout (B) 24.8 10.4 12.2 16.2 26.4 54.0 72 M
Stream-dropout (C) 24.8 10.3 12.2 16.2 26.4 54.3 72 M

A: 2-step training, with stage1 networks trained first, followed by training of
stage2 network.
B: 2-step training, with stage1 networks trained first, followed by joint-training
of both stage1 and stage2 networks.
C: 1-step training, with stage1 and stage2 networks jointly trained in one go.

With the advent of effective initialization techniques [65,68,69] and significant

improvement in computational power due to GPUs, we can train these deep

architectures.

Table 4.4 shows the performance comparison of various stream-dropout

multi-stream systems with full-combination system. First row of the table

shows the performance of FC system. The AVG. column shows average of WERs

obtained by decoding all possible stream combinations. The other columns

show average of WERs of stream combinations with 5, 4, 3, 2 and 1 streams.

Row stream-dropout (A), shows WERs obtained by using the 2 stage architec-

ture described in previous section.
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Performance of joint training systems are shown in the other rows of

the table. Systems in the joint training category differ in terms of initialization

and number of hidden neurons of the stage 1 networks. For stream-dropout sys-

tem (B), we used trained stage 1 networks of stream-dropout (A) and randomly

initializing stage 2 network. Then all the parameters of the system (weights

and biases of both stage 1 and stage 2) are trained by backpropagating the er-

rors all the way to initial layers of the stage 1 networks. Note that the stream-

dropout is employed at the input of stage 2 network. From the table, we can

infer that training the model parameters of stage 1 jointly with stage 2 network

is resulting in a better performing system. Instead of using trained networks of

stage 1, for stream-dropout system (C) we used randomly initialized networks.

Table 4.4 shows that performance of system (C) is comparable to system (B).

Even though the network in stream-dropout (C) is much deeper than stream-

dropout (B), we did not observe any difficulty in training the network. The rea-

son for this is due to ReLU neurons and good initialization of the network [69].

4.4 Conclusions

In this chapter we proposed a new multi-stream (MS) architecture.

The proposed architecture employs stream-dropout technique, referred to as

stream-dropout MS system. The stream-dropout system consists of signifi-
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cantly low number of parameters than past full-combination system. Com-

parison results showed that the parameter reduction is achieved without any

noticeable loss in performance.

Currently deep learning ASR research can be classified into two cate-

gories: (i) cloud-based ASR, and (ii) on-device ASR. The cloud-based ASR em-

ploys massive models to obtain best possible accuracy, whereas on-device mod-

els need to work on low power and low memory constraints. Examples include

ASR on mobile devices, wake-word keyword detection etc. Also, the latter mod-

els are prone to exposure of challenging acoustic conditions as the user can take

the device any where she/he wishes to. Stream-dropout technique makes MS

systems feasible in these applications, where noise robustness is most needed.
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Chapter 5

Performance monitoring

techniques

We introduced a new multi-stream architecture in previous chapters,

which involves a set of binary masks, one for each stream. In this system, a

stream can be included or excluded by setting the corresponding mask value to

1 or 0, respectively. In this chapter, we propose techniques to automatically esti-

mate optimal mask values, further improving the noise robustness of proposed

multi-stream system. This is followed by discussion on reducing run-time com-

putational complexity of these techniques.

The fundamental motivation for using multi-stream approach is noise
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Figure 5.1: Stream-dropout multi-stream architecture, with performance
monitoring module. During testing of the system the performance module con-
trols the binary masks (zi’s).

or mis-match effects only few portions of signal space. Identifying and em-

phasizing the reliable regions regions can improve overall recognition accu-

racy. Historically, techniques which perform this task is referred to as “per-

formance monitoring” (PM) techniques. This chapter deals with these tech-

niques. We first describe how performance monitoring (PM) module is used in

stream-dropout multi-stream system described in chapter 3. This is followed

by description and analysis of proposed techniques, and their comparison with

baseline PM methods.
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5.1 Performance monitoring in

stream-dropout multi-stream system

Consider the stream-dropout multi-stream system (referred to as MS

system from hereon) illustrated in Fig. 5.1. The first stage involves construc-

tion of the streams. This is performed by acoustic feature extraction followed

by discriminative transformation using neural networks. In the next stage,

fusion of streams from stage1 is performed using stream-dropout component.

The stream-dropout component employs binary masks zi one for each stream.

During training each mask is distributed as Bernoulli random variable, and is

independent of other masks. That is,

zi ∼ Bern(p = 0.5)

zi |= zj , ∀i 6= j

During test, zi’s are deterministic. In chapter 3, we used zi = 1 for all the

sub-band streams. This choice is not optimal, as it is based on the assump-

tion that all streams are equally reliable for all acoustic conditions. Usually

noise has a non-uniform effect on the streams. That is, some streams are going

to be corrupted more and the other streams are going to be relatively uncor-

rupted. If the prior knowledge about type of noise is available, we can discard
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streams which are highly corrupted by setting the corresponding mask to 0 and

by doing that improve performance of the system. Most often this knowledge

is not available a priori and therefore there is a need for automatic methods to

perform this task. Techniques which try to find the optimal mask value are re-

ferred to as performance monitoring methods. Task of performance monitoring

(PM) module is to automatically identify optimal mask values, as illustrated in

Fig. 5.1.

5.2 ∆M PM measure

In this section, we describe the one of two proposed measures to es-

timate performance of a neural network classifier. Since the measure is an

extension to previously proposed M-measure [3], we first describe M-measure

5.2.1 M-measure

Speech message is coded in the form of sequence of sounds (phonemes,

syllables etc). Each sound lasts for a certain amount of time and then change

into different sound. Therefore it is reasonable to assume that for a high quality

speech, frames which are close in time are more similar than speech frames

separated by larger time spans. When the speech is degraded by additive noise

or other distortions, these affects dominate the signal and sounds become more
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similar, resulting frames becoming more similar. The same behavior is observed

in posterior probabilities obtained at the output of a neural network [3].

M-measure attempts to quantify this behavior. First it involves com-

putation of M(τ) which is defined as

M(τ) =
1

T − τ

T∑
t=τ

D(pt−τ ,pt), (5.1)

where τ denotes the time interval between the phoneme posterior probabilities

at t−τ and t, pt−τ and pt, and D(p,q) denotes the symmetric KL divergence

between the posteriors,

D(p,q) =
K∑
k=0

p(k) log
p(k)

q(k)
+

K∑
k=0

q(k) log
q(k)

p(k)
, (5.2)

where p(k) denotes the k-th element of a posterior vector p ∈ RK .

Fig. 5.2 shows the behavior of M(τ) for clean and noisy speech utter-

ances. It can be observed thatM(τ) is higher for clean speech compared to noisy

speech. The reason for this is two frames separated by large distance usually

belong to different speech sounds, resulting in higher divergence between pos-

teriors. Whereas in noisy speech, the noise makes the posteriors similar which

results in lower divergence values.

The M-measure is defined as average of M(τ) over several time inter-
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vergence were investigated and were shown to correlate with the
observed recognition accuracies [7][4]. Subsequently, they were
applied in adapting multi-stream phoneme recognizer to previously
unobserved noise in the test data.

The current technique utilizes temporal properties of speech,
as consisting of sequences of information-bearing speech sounds,
expressed in speech features. This differentiates it from earlier ap-
proaches, which used statistics of instantaneous classifier output.

3. PROPOSED PERFORMANCE MONITORING
TECHNIQUE

abelsec:proposed

3.1. Coding message in speech as reflected in M(�t)

Speech messages are coded in sequences of speech sounds 1 . A rea-
sonable assumption is that feature vectors describing the speech sig-
nal should be similar within each sound and different across sounds.
Some time ago [5] we were interested in deriving a typical extent of
sound coarticulation and proposed a measure that evaluated a mean
temporal distance of features over some interval as a function of
time-span �t between two feature vectors in running speech,

M(�t) =

PT��t
i=1 D(Pt, Pt+�t)

T ��t
(1)

where D is distance between two feature vectors Pt and Pt+�t.
Notice that there is no need for labelled data and no need for

knowing what the sounds are. The technique is applied directly on
any non labelled and/or non transcribed data.

It turns out that, besides evaluating average extent of the sounds,
this measure could be also used to evaluate how similar or different
(in average) these sounds are. For high quality speech, the sounds are
sufficiently different. When the speech gets corrupted by stationary
or slowly varying distortions, these distortions start dominating the
signal and the sounds become more similar.

The situation is illustrated in Fig.1. The upper part of the fig-
ure illustrates an idealized situation where feature vectors in each
sound are stationary and all sounds are of equal lengths. The M(�t)
increases linearly up to �sound, which indicates the length of the
sound, and then it stays constant at the value of average divergence
between speech sounds. In reality, illustrated in the middle part of
Fig1, the feature vectors are not stationary but gradually change due
to coarticulation in speech production, and the sounds might be of
different lengths. Still, the M(�t) increases gradually with �t up
to the �tcritical, which indicates the longest time span for which
the two feature vectors are guaranteed to be coming from different
sounds, i.e. the longest extent of sound coarticulation. M(�t) may
exhibit a peak at �tunit, which is the average time span between
unit centers, when features in different units are in average most dis-
similar to each other.

3.2. The effect of signal distortions

The particular shape of M(�t) is dependent on many factors that
characterize the data. Most relevant for our current application is
that stationary distortions of the signal make all speech units more

1We intentionally avoid here the term ”phoneme” or ”phone”. Our mea-
sure merely indicates the presence or absence of structure in the signal that
could bear an information. An assumption is that there is are a number of dif-
ferent similar-length interleaved information-carrying sounds. Our measure
evaluates their difference in a given feature space and estimates their extent.
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Fig. 2: M(�t) curves for in Babble noise at 5 different SNRs, along
with variance, using two different MTD formulations

similar to each other, impairing information-bearing capacity of the
speech sounds. Diminished differences in speech sounds show in
decreased values of M(�t).

3.3. The effect of different feature representations

With an appropriate divergence measure, M(�t) can be computed
using any feature representation of speech. The upper part of Fig.2
shows means and variances of M(�t) curves computed from in-
dividual TIMIT sentences using PLP features with Euclidean dis-
tance. The lower part of the Fig.2 shows the similar curves but
M(�t) computed using phoneme posterior features with symmet-
ric Kullback-Leibler distance.

To facilitate the comparison, the curves were normalized with
respect to their values at �t = 200ms in clean conditions. As appar-
ent, PLP-derived curves exhibit peaks at around 70 ms, which corre-
sponds to average spacing between center of neighboring phonemes
in the TIMIT data, and they flatten at approximately constant value
after about �t > 200ms, indicating the main effect of phoneme
coarticulation in the TIMIT data. The posterior-derived curves do
not exhibit the peak at the average phoneme center spacing. This
can be understood since the artificial neural net classifier applied in
this experiment was trained to deliver similar features through the

7424

Figure 5.2: M-measure curves for in Babble noise at 5 different SNRs, along
with variance, using two different MTD formulations [3].

vals τ and the result is used as measure of performance of neural networks.

M = mean
{τ}

[M(τ)], (5.3)

where {τ} consists of 10, 15, 20, · · · , 80 frames (15 intervals).

5.2.2 Extending M-measure

M-measure assumes that distance between probability estimates over

several time-spans should be large for known data. However, this is not always

accurate. If two posteriors are from the same phoneme class, the divergence

between them should be small, irrespective of their time seperation. This sit-
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Figure 5.3: Posterioragram of a clean speech signal from Aurora4 training set.

uation is illustrated in Fig. 5.3. The figure shows a section of posteriogram of

a clean speech signal. Posterior vectors pt1 and pt3 belong to phoneme class z,

and posterior vector pt2 belongs to phoneme n. Therefore, for a good quality

posteriogram, D(pt1,pt3) should result in a lower value compared to D(pt1,pt2).

The M-measure ignores the case that posterior pairs that are sepa-

rated by large time intervals can belong to the same phoneme class. It accumu-

lates divergence between the frames without considering this kind of phoneme

dependency. This implies M-measure selects posteriogram which hasD(pt1,pt3) >

D(pt1,pt2).

This problem is alleviated in the proposed ∆M measure. We introduce

the idea of within-class (Mwc) and across-class (Mac) accumulated divergences
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Figure 5.4: pac(τ) values for several time gaps (τ ).

between posterior vectors, and define ∆M measure as:

∆M = Mac −Mwc. (5.4)

In order to estimate Mac and Mwc, we decompose M-measure into

M(τ) = pwc(τ) ·Mwc + pac(τ) ·Mac + ετ , (5.5)

where M(τ) denotes the original M-measure defined using Eq. (5.1).

pwc(τ) and pac(τ) denote the probability of a pair of frames separated by τ be-

ing instances from the same and different phonemes, respectively. Note that
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pwc(τ) = 1−pac(τ). The error term ετ is included because Eq. (5.5) is an approx-

imate representation of the M-measure. In the equation 5.5, M(τ), pac(τ) are

known quantities. M(τ) is be computed for each test utterance, and pac(τ) is

computed apriori from training data transcriptions. Fig. 5.4 shows pac(τ) values

for several time gaps (τ ). It can be seen from the figure that even in the case of

neighboring frames (i.e. frames separated by τ = 1), 10 % of them correspond to

different phones. Also even in the case of frames separated by large time gaps

(i.e. τ = 80), 3 % of them correspond to same phone.

Quantities Mwc and Mac are estimated by solving the following linear

equation,


M(τ1)

. . .

M(τN )

 =


1− pac(τ1) pac(τ1)

· · · · · ·

1− pac(τN ) pac(τN )


 Mwc

Mac

+


εt1

· · ·

εtN

 (5.6)
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Assuming that y, A, x, and ε are given as

y =

[
M(τ1) · · · M(τN )

]T

∈ RN (5.7)

A =


1− pac(τ1) pac(τ1)

· · · · · ·

1− pac(τN ) pac(τN )

 ∈ RN×2 (5.8)

x =

[
Mwc Mac

]T

∈ R2 (5.9)

ε =

[
εt1 · · · εtN

]T

∈ RN (5.10)

Mwc and Mac can be computed by the least square solution:

x = (ATA)−1ATy. (5.11)

The experiments below used the values (τ1, τ2, · · · , τN ) = (1, 2, 3, 4,

5, 10, 15, 20, · · · , 75, 80) and N = 20, which were determined by conducting

preliminary experiments. Note that higher ∆M values indicate more reliable

posterior estimates from the DNN classifier.
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Figure 3: Comparison of spectrographic representations obtained from clean speech, noisy speech (babble noise at 10 dB) and rever-
berant speech (reverberation time of 300 ms for the mel-spectrogram and the proposed 2-D AR model spectrogram.

components are trained on the development data. The develop-
ment data set consists of a combination of audio from the NIST
2004 speaker recognition database, the Switchboard II Phase
3 corpora, the NIST 2006 speaker recognition database, and
the NIST08 interview development set. There are 4324 male
recordings and 5461 female recordings in development set.

Once the UBM is trained, the mixture component means
are MAP adapted and concatenated to form supervectors. We
use the i-vector based factor analysis technique [23] on these
supervectors in a gender dependent manner. For the factor anal-
ysis training, we use the development data from Switchboard II,
Phases 2 and 3; Switchboard Cellular, Parts 1 and 2, NIST04-
05 and extended NIST08 far-field data. There are 17130 male
recordings and 21320 female recordings in this sub-space train-
ing set. Gender specific i-vectors of 450 dimensions are ex-
tracted and these are used to train a PLDA system [24]. The
output scores are obtained using a 250 dimensional PLDA sub-
space for each gender.

For evaluating the robustness of these features in noisy con-
ditions, the test data for Cond-2 is corrupted using (a) babble
noise, (b) exhibition hall noise, and (c) restaurant noise from
the NOISEX-92 database, each resulting in speech at 5, 10,
15 and 20 dB SNR. These noises are added using the FaNT
tool [25]. For simulating reverberant recording conditions, we
also convolve the test data for Cond.-2 with three artificial room
responses [26] with reverberation time of 100, 300 and 600ms.
Cond-2 has interview microphone recordings with the highest
number of trials among NIST 2010 core conditions (2.8M) and
it contains 2402 enrollment recordings and 7201 test record-
ings. In our experiments, the enrollment data consists of “clean”
speech data present in NIST 2010 and the test data may be clean
speech data or noisy data. The voice-activity decisions provided
by NIST are used in these experiments. The GMM-UBM, i-
vector and the PLDA sub-spaces trained from the development
data are used without any modification.

Table 1: EER (%) clean and noisy version (babble at 5 dB SNR
for Cond.-2 of NIST 2010 SRE for baseline MFCC features and
2-D AR features for various choices of model order for temporal
ARmodel in terms of poles per sec (pps) and spectral ARmodel
in terms of poles per frame (ppf).

Feat. Clean Noisy
MFCC 3.0 12.5

2-D AR (10pps, 6ppf) 4.8 15.4
2-D AR (90pps, 6ppf) 3.7 14.4
2-D AR (10pps, 24ppf) 4.0 12.8
2-D AR (90pps, 24ppf) 2.7 10.5
2-D AR (30pps, 12ppf) 2.7 9.8
2-D AR (60pps, 12ppf) 2.8 9.7
2-D AR (15pps, 12ppf) 3.0 11.4
2-D AR (30pps, 18ppf) 2.6 10.2

The performance metric used is the EER (%) and the false-
alarm rate at a miss-rate of 10% (Miss10). The initial set of ex-
periments discuss the selection of model order using the clean
data for Cond.-2 as well as validation data from babble noise
at 5 dB SNR. This choice of validation data was not optimized
in any manner and the performance on other types of noise and
SNR levels relates to the generalization of the parameter selec-
tion process. The results for various choices of model order
(described in terms of number of peaks per second for tempo-
ral model or number peaks per frame across all bands for the
spectral AR model) is shown in Table. 1.

Based on the results provided in Table. 1, we select a model
order of 30 poles per sec (pps) for the temporal AR model and
an order of 12 poles per frame (ppf) for the spectral AR model.
The comparison of the performance for various noisy and rever-
berant conditions (average of three types of noise) for the base-
line features as well as the 2-D AR features is shown in Fig. 4.

test	speech

DNN_1

DNN_2

DNN_N

performance
monitor	score

performance
monitor	score

performance
monitor	score

Selection	
based	on	
erformance
monitor	score

posterior
probabilities

phone	or	word	
decoding

Figure 5.5: Stream selection framework used to evaluate various uncertainty
estimation measures. Each DNN is trained on a specific noise condition.

5.2.3 Stream selection experiments

ASR system

In order to compare ∆M measure with M-measure, we used stream

selection framework shown in figure 5.5. The stream selection framework con-

tains several DNN-based classifiers in parallel. Each DNN classifier is referred

to as “stream”. A sequence of posterior probability vectors is computed for each

stream by forward passing a given test utterance through the corresponding

DNN. Posteriors of the least uncertain stream are selected, and provided as an

input to a phoneme decoder. In each stream, the DNN is trained on a specific

noise condition. This results in a multi-stream system where each stream is

trained on acoustic environment which is most similar to the environment of

test utterance. For a given test utterance, selecting posterior estimates from

the stream having the most similar acoustic property as the test utterance re-
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sults in the lowest error rate.

Experiments on TIMIT dataset

Experimental setup:

We used the TIMIT speech dataset [70] for the stream selection experiments.

The training set contains 3696 SI and SX utterances from 462 speakers. This

totals to 3.12 hours of speech. These are clean, read speech sentences. We

used the core development set for the purpose of testing. Five versions of orig-

inal training set are created by corrupting the clean training speech with four

types of additive noise, at various signal-to-noise ratios ranging from 0 dB to

20 dB. We used car, babble, buccaneer1, and buccaneer2 noises from NOISEX

database [71]. The original clean training set and four noisy training sets are

combined to create a multi-condition training set. The six versions (one clean

+ four noisy + one multi-condition) of training sets are used to train six differ-

ent DNNs, where five of them are trained on a specific acoustic condition, and

one DNN is trained on multi-condition data. We used a depth of six hidden

layers, and each hidden layer consist of 1024 sigmoidal units. Similar to pre-

vious studies [72], DNNs are trained on 40 dimensional Mel filter-bank energy

features. The DNNs are pre-trained using RBM [65] and fine-tuned using the

cross-entropy cost function. The targets used for fine-tuning are context depen-

76



CHAPTER 5. MULTI-STREAM: TESTING

Ta
bl

e
5.

1:
C

om
pa

ri
so

n
of

va
ri

ou
s

pe
rf

or
m

an
ce

m
on

it
or

in
g

m
ea

su
re

s,
us

in
g

ph
on

em
e-

er
ro

r-
ra

te
s

(P
E

R
)

in
st

re
am

-s
el

ec
ti

on
sy

st
em

.
T

he
sy

st
em

co
ns

is
ts

of
5

no
is

e-
sp

ec
ifi

c
ne

tw
or

ks
an

d
a

m
ul

ti
-c

on
di

ti
on

ne
tw

or
k.

T
he

m
ul

ti
-c

on
di

ti
on

ne
tw

or
k

is
tr

ai
ne

d
on

co
m

bi
ne

d
da

ta
se

t
of

no
is

e-
sp

ec
ifi

c
ne

tw
or

ks
.

se
en

no
is

es
un

se
en

no
is

es
T

ra
in
\T

es
t

cl
ea

n
ca

r
ba

bb
le

bu
cc

1.
bu

cc
2.

de
st

op
s.

ex
ha

ll
f1

6
fa

ct
or

y
A

vg
.P

E
R

(%
)

cl
ea

n
20

.9
34

.2
58

.3
65

.4
65

.0
59

.2
56

.8
62

.6
61

.6
53

.8
ca

r
23

.8
22

.8
58

.1
65

.2
64

.6
56

.1
54

.6
62

.7
60

.6
52

.1
ba

bb
le

30
.8

33
.1

37
.5

38
.1

44
.6

50
.6

53
.0

42
.0

48
.6

41
.2

bu
cc

1.
35

.4
41

.3
53

.7
38

.1
44

.9
50

.6
53

.0
42

.0
48

.6
45

.3
bu

cc
2.

37
.0

45
.4

58
.3

45
.0

37
.6

50
.7

56
.3

46
.0

51
.7

47
.6

M
ul

ti
-c

on
di

ti
on

22
.2

24
.9

39
.4

42
.0

43
.0

39
.7

38
.4

39
.6

40
.8

36
.7

U
tt

er
an

ce
O

ra
cl

e
18

.4
20

.5
34

.7
34

.5
34

.8
37

.0
34

.8
35

.3
38

.2
32

.0
M

at
ch

ed
co

nd
it

io
n

20
.9

22
.8

37
.5

38
.1

37
.6

39
.7

38
.4

39
.6

40
.8

35
.0

E
nt

ro
py

22
.0

24
.8

40
.9

43
.2

48
.5

44
.3

39
.7

40
.5

42
.6

38
.5

M
m

ea
su

re
22

.1
24

.8
40

.8
38

.7
41

.2
40

.8
39

.6
39

.2
41

.8
36

.6
∆
M

m
ea

su
re

22
.1

24
.7

40
.0

38
.3

41
.1

41
.0

39
.2

39
.0

41
.6

36
.3

77



CHAPTER 5. MULTI-STREAM: TESTING

dent tri-phone states, generated using a GMM/HMM system trained on clean

MFCC features.

We used the development set for testing the models. The development

set consists of 34 minutes of speech. Similar to the training set, we corrupted

the development set with car, babble, buccaneer1, buccaneer2, destroyerops,

exhibition hall, f16 and factory noises, at signal-to-noise ratios of 0, 5, 10, 15

and 20 dB. Four types of noise in this set are seen acoustic variability and the

other four noises are unseen acoustic variability in the training set. The whole

development set (clean and noisy versions) is referred to as test from here on.

Experimental results: Table 5.1 shows the results of test set in various

streams. In order to show the upper limit of performance, we defined two oracle

stream selection techniques as follows:

• Utterance oracle: We select a stream with the lowest error rate for each

utterance.

• Matched condition: We select a stream trained on the same noise for

test utterance with seen noise. For test utterance with unseen noise, we

select stream trained with multi-condition data since it results in lower

error rate of all the models.

We can infer that error rates of the condition-level oracle streams are
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always less than those of individual streams (i.e., clean, car, babble, buccaneer1,

and buccaneer2). In addition, the utterance-level oracle streams performs bet-

ter than the condition-level oracle streams.

We also compared with Entropy measure. It is been observed in sev-

eral studies that [73, 74] as noise in test data increases, the output posterior

probability distribution from a DNN, trained on clean data, converges to non-

informative, uniform distribution. This results in an increase in the entropy of

the posterior distribution. Based on this observation, entropy was proposed as

a performance measure.

It is evident from Table 5.1 that in seen noises, streams trained on a

matched noise condition, which corresponds to the condition-level oracle stream,

perform better than the streams trained on multi-condition data. Whereas, in

the case of unseen noises, choosing the multi-condition stream performs better,

as it is more generalizable to unseen noises than condition specific streams.

Table 5.1 shows that entropy of posterior probability, obtained at the

output of DNN can be erroneous. M measure is performing better than entropy,

which suggests rather than looking at a single frame, measures which look at

temporal dynamics of posteriors are better. Further improvement to M measure

is obtained by using ∆M measure.
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Experiments on Aurora4

We present stream selection experiments performed using Aurora4

database. In this experiment, we attempt to demonstrate that the effectiveness

of the proposed measures on TIMIT is generalizable. Similar to the stream

selection setups in TIMIT database, we created five versions of training and

test sets. The original clean Aurora4 training set is corrupted with car, babble,

buccaneer1, and buccaneer2 noises from NOISEX database [71]. A network

is trained on each of the noise condition to create condition-specific streams.

For testing the stream-selection system, clean subset of Aurora4 test set is is

corrupted with car, babble, buccaneer1, buccaneer2, destroyerops, exhall, f16

and factory noises. Table 5.2 shows the stream selection results on the Aurora4

database. From this table, we can conclude that the proposed measures provide

significant improvements over the conventional measures. These results also

indicate that the proposed measures are generalizable to other databases.

5.2.4 Stream-dropout multi-stream system

In this section, we illustrate the effectiveness of ∆M technique as per-

formance monitoring module in stream-dropout multi-stream system. For this

purpose, we use a 5 sub-band multi-stream system based on stream-dropout

training described at the beginning of the chapter (shown in Fig. 5.1). The sys-
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tem consists of 5 binary masks (z1, z2, z3, z4 and z5), where each one can take

0 or 1. For a given speech utterance, this results in 31 (excluding the null

combination) possible posteriorgrams. ∆M is computed on each of the 31 pos-

teriorgrams and the one with largest ∆M is given as input to lattice generation

module.

Speech material: In order to illustrate the effectiveness of ∆M measure we

use Aurora4 speech database [66]. The models are trained on clean training set

of Aurora4. The training set consists of utterances recorded using Sennheiser

HMD-414 close-talking microphone, with 5000 word vocabulary size. These

correspond to roughly 15 hours of speech data, from 83 speakers, sampled at

16000 Hz.

The test set can be classified into 14 subsets. A clean subset which

consist of 330 utterances is recorded using Sennheiser microphone. The second

subset consist of the same 330 utterances recorded over secondary microphones.

This is to evaluate the robustness of ASR systems to microphone mismatches.

The remaining 12 subsets were defined by adding each of the 6 noise types (

street, babble, train, car, restaurant, airport) at randomly chosen SNR between

5 and 15 dB for each of the microphone types. The goal was to have an equal

distribution of each of the 6 noise types and the SNR with an average SNR of 10

dB. These test sets are usually grouped into 4 subsets: clean (1 test case, group
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A), additive noise (6 test cases, group B), clean with channel distortion (1 test

case, group C) and additive noise with channel distortion (6 test cases, group

D). The 330 recordings in each test set correspond to 40 minutes of speech, so

the total test set size is close to 9.3 hours.

In the next subsections, we analyze the effect of various parameters

involved in computation of ∆M .

Time span sampling

It is shown in previous section that computation of ∆M measure in-

volves computation of M(τ) at various τ values. Using all possible τs is not

practical as it involves computation of O(T 2) KL divergences, where T is length

of input utterance. In order to compute ∆M measure, we need to estimate

two quantities Mac and Mwc. Since we are interested in estimation of just two

quantities, we hypothesize that using smaller number of τ s are sufficient for

accurate computation. We tested with τ s 1, 2, 3, 4, 5, · · · , 75, 80. Table 5.3 shows

the comparison between ∆M measure computed from all possible intervals and

the pre-defined intervals. It can be inferred from the table that using the pre-

defined intervals is sufficient there by massively reducing computational com-

plexity.
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Table 5.3: Comparison of WERs (%) using ∆M PM, computed using two time-
intervals T1 and T2. T1 uses all time steps up to 80 frames, and T2 uses
time steps 1, 2, 3, 4, 5, · · · , 65, 70, 75, 80.

Condition
Stream-dropout MS

w/o PM ∆M (time intervals)
T1 T2

Clean Same Mic.
clean 2.6 2.6 2.6

Clean Diff. Mic.
clean 19.8 13.6 13.3

Additive Noise Same Mic.
airport 32.1 31.2 31.3
babble 38.6 37.8 38.1
car 18.5 16.0 14.9
restaurant 40.8 40.4 40.5
street 42.6 41.2 40.3
train 44.3 42.8 42.8
Avg. 36.1 34.9 34.6

Additive Noise Diff. Mic.
airport 47.9 45.5 45.2
babble 54.2 48.9 48.9
car 33.7 25.4 24.4
restaurant 56.0 53.7 52.9
street 59.1 55.0 53.7
train 58.1 54.2 53.1
Avg. 51.5 47.1 46.4
Overall Avg. 37.6 34.8 34.3
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Effect of class type in DNN estimations

Typically, in a state-of-the-art ASR systems, the output softmax layer

represent categorical posterior distribution over tri-phone state classes. Here,

we analyze whether tri-phone posteriors are optimal for performance monitor-

ing using ∆M . We compare tri-phone posteriors with monophone posteriors.

Instead of training a new network directly on monophone targets, we reuse

the network trained on tri-phone targets to compute mononphone distribution.

The monophone distribution is computed by merging probabilities of tri-phone

classes. The tri-phone classes to merge to obtain a monophone class is defined

many-to-one mapping between tri-phone and monophone classes.

Table 5.4 shows WERs obtained from the stream-dropout multi-stream

system, using various performance monitoring measures. Second column of

the table (w/o PM) shows performance obtained by using DNN trained using

stream-dropout and during testing, we do not use performance monitoring mod-

ule and and pass data from the all the streams unchanged.

Columns 3 and 4 of the table 5.4 show performance improvements ob-

tained by using ∆M measure on tri-phone and monophone posteriors, respec-

tively. From the table, we can observe that using ∆M further improves the

performance of the stream-dropout system. Also, it is important to note that

∆M PM never degrades the performance. The improvement illustrates that
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Table 5.4: WERs(%) obtained by using ∆M performance monitoring on tri-
phone and phoneme posteriors in stream-dropout multi-stream system. All the
models in the system are trained on clean training set of Aurora4 dataset.

Condition
Stream-dropout MS

w/o PM ∆M
PDF post. phone post.

Clean Same Mic
clean 2.6 2.6 2.6

Clean Diff. Mic
clean 19.8 13.3 12.8

Additive Noise Same Mic
airport 32.1 31.3 30.6
babble 38.6 38.1 37.2
car 18.5 14.9 14.6
restaurant 40.8 40.5 40.6
street 42.6 40.3 40.3
train 44.3 42.8 42.4
Avg. 36.1 34.6 34.2

Additive Noise Diff. Mic
airport 47.9 45.2 45.0
babble 54.2 48.9 49.1
car 33.7 24.4 24.5
restaurant 56.0 52.9 53.0
street 59.1 53.7 53.7
train 58.1 53.1 52.8
Avg. 51.5 46.4 46.3
Overall Avg. 37.6 34.3 34.2
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with explicitly dropping out noisy, non-informative streams can result in a sub-

stantial improvement (8.7 % improvement over w/o PM results). From the ta-

bles we can infer that monophone posteriors are better suited for performance

monitoring task than tri-phone posteriors, as consistent improvements are ob-

served across all the acoustic conditions. We hypothesize that the reason for

this improvement is due to smooth nature of phoneme posteriors compared to

tri-phone posteriors.

Another advantage of using monophone posteriors is computational

complexity. Computation of ∆M involves computing KL divergence between

several pairs of posterior vectors separated by τ (form equations 5.5). Using

tri-phone posteriors can result in a significant computational overload, as we

need to compute KL divergence between distributions with 1000s of classes.

Using monophone posteriors can alleviate this problem as number of classes are

typically in the range of 50-100 (number of phonemes), resulting in a reduction

of an order of magnitude in number of operations involved in computing KL

divergence.

5.3 Autoencoder based PM measure

Application of autoencoders for performance monitoring task is based

on the following premise: A DNN classifier is best performing and least uncer-
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Figure 5.6: Illustration of seven layered autoencoder with five non-linear hid-
den and two linear visible layers.

tain about its posterior probability estimates on its training data. Therefore,

uncertainty of a test data can be measured by computing the deviation in prob-

ability estimates derived from the test and the training data.

One straightforward way to compute the deviation between training

and test data posteriors is to compute KL divergence between all possible train

and test data posterior vector pairs. But this approach is computationally in-

tensive, as it can involve massively large number of KL divergence computa-

tions for each test frame. One alternative to the above approach is to model

the training data posteriors, and evaluate test posteriors on this model. In this

work we employ autoencoders to model the training data posteriors.

An autoencoder is a multi-layered feed-forward neural network, used

in the context of unsupervised learning. The network is trained to reconstruct
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input at its output. This is achieved by training the network to minimize the

squared error cost between an output vector from the autoencoder and the cor-

responding target vector. The targets used to train the network are inputs

themselves. The cost function used to optimize the network parameters (W) is

described as

min
W

E||x− x̂||22, (5.12)

where x is an input vector and x̂ is an output vector from the network. Fig-

ure 5.6 shows an autoencoder consisting of 5 hidden layers. An autoencoder

with more than one non-linear hidden layer is shown to capture complex, non-

linear manifolds present in the training data [6, 75, 76]. In order to avoid a

trivial identity mapping (the network weights equal to the unit matrix), the

number of nodes in the third hidden layer needs to be less than the input (and

output) layer.

5.3.1 Basic property for performance monitoring

Since the network is trained to minimize the reconstruction error, a

vector sampled from the distribution of training data will yield a low recon-

struction error compared to vectors drawn from a different distribution. This

property is illustrated in Fig. 5.7, which shows distributions of l2 norm of re-

construction error vectors (||e||2), computed from the training data (train), data
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Figure 5.7: Illustration of property of autoencoder useful to distinguish
matched data and mis-matched data.

similar to the training data (matched test), and data that deviate from the

training data (mis-match test). Fig. 5.7 illustrates that the reconstruction er-

ror is a good indicator for measuring the mismatch between the training and

test data.

5.3.2 Stream selection experiments

Tables 5.5 and 5.6 show performance of autoencoder performance mon-

itoring (AE PM) in stream selection framework described in previous section.

It is evident from the tables that AE PM is performing better than all the other

measures. Also, the performance of AE PM is matching with the condition-

level oracle stream. This shows that, in seen noisy cases, AE PM is successful

in selecting condition specific streams and in unseen noisy cases, it is select-
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ing the multi-condition stream. The reason for the better performance could be

the ability of autoencoders to model distributions lying on a complex non-linear

manifolds [76]. In addition, combination of AE PM and ∆M seems to improve

over the condition-level oracle stream. This implies that the AE PM+∆M is

able to select a stream, not just based on similarity with the stream’s training

data, but also based on the stream’s performance.

5.3.3 Stream-dropout multi-stream

In previous section, we demonstrated superiority of autoencoder PM

over baseline PM measures in stream selection system with condition specific

streams. In this section, we apply autoencoders for performance monitoring in

stream-dropout multi-stream system. We first present the experiments per-

formed in order identify the optimal parameter setting for training autoen-

coders.

Optimal features

Senone posteriors:

As described previously, application of autoencoders for PM involves

modeling training data posteriors using an autoencoder. Performance monitor-

ing score of a test speech utterance is proportional to the reconstruction errors
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Table 5.7: WERs(%) obtained by using AE PM trained on raw posteriors and
logit-posteriors in stream-dropout multi-stream system. All the models in the
system are trained on clean training set of Aurora4 dataset.

Cond.
Stream-dropout MS

w/o PM AE PM
raw post. logit-post.

Clean Same Mic
clean 2.6 3.1 2.6

Clean Diff. Mic
clean 19.8 13.2 12.8

Additive Noise Same Mic
airport 32.1 31.2 31.6
babble 38.6 40.9 38.6
car 18.5 11.0 14.9
restaurant 40.8 43.3 40.6
street 42.6 52.2 48.5
train 44.3 49.9 48.5
Avg. 36.1 38.0 37.1

Additive Noise Diff. Mic
airport 47.9 47.6 46.8
babble 54.2 56.0 53.9
car 33.7 25.6 28.0
restaurant 56.0 57.6 55.8
street 59.1 61.5 60.6
train 58.1 61.5 59.8
Avg. 51.5 52.1 50.8
Overall Avg. 37.6 38.9 37.3

94



CHAPTER 5. MULTI-STREAM: TESTING

of the test data posteriors by the autoencoder. Higher reconstruction error in-

dicates greater mis-match between training and test acoustic conditions. We

hypothesize that appropriate transformation of raw posteriors to generate fea-

tures for training autoencoders in AE PM is crucial. In this section, we present

experiments to identify optimal features to train a AE PM module for stream-

dropout MS system.

In order to illustrate the importance of experiments conducted in this

section, we used raw tri-phone posteriors to train AE PM module. The AE PM

is trained as follows: Once the DNN classifier in stream-dropout MS is trained,

entire training data is forward passed through the DNN to obtain tri-phone

posteriors. During the forward passing, the five binary masks (one for each

sub-band stream) are set to 1. The assumption here is for training data, retain-

ing all the streams result in best posteriors. Then, an autoencoder is trained to

minimize the reconstruction error of these posteriors. The autoencoder consist

of an input layer, 2 sigmoidal layers (512 units), a bottleneck layer (25 units), 2

sigmoidal layers (512 units) and an ouput layer, and it is trained in mini-batch

SGD algorithm with a batch size of 256 frames. We used newbob learning rate

scheduling with initial learning rate of 0.0008. For a given test utterance, 31

posteriograms are extracted, one for each stream combination. PM scores of the

31 posteriograms are computed by AE PM module and posteriogram with high-
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est PM score is provided as input to decoder module. Table 5.7 shows the word

error rates obtained by stream-dropout MS system w/o PM and with AE PM

trained on raw tri-phone posteriors. The models are trained on Aurora4 clean

training set and tested on standard Aurora4 test set. It can be observed from

the table that employing raw posteriors+AE PM actually degrades the perfor-

mance of the system significantly compared to w/o PM. This experiment shows

that raw tri-phone posteriors are not suitable for AE PM module, and proper

feature preparation is required to AE PM module.

We hypothesize that the reason for performance degradation observed

in using raw posteriors is that they lie in [0, 1] and are hard to model. One way

to alleviate this problem is to transform posteriors from [0,1] to [-∞, +∞]. We

experimented with logit-transform of posteriors. Column 4 of table 5.7 show

results using AE PM trained logit-posteriors. From the table, we can infer

that AE PM trained on logit-posteriors performs noticeably better than AE PM

trained on raw posteriors. This shows that instead of modeling raw posteriors,

modeling transformed (logit-posteriors) results in better autoencoders. Also,

using AE PM trained on logit-posteriors always results in an improvement (al-

beit marginally) over w/o PM.

We demonstrated that logit transformation on posteriors results in a

better PM module. Fig. 5.8 shows eigenvalues of eigenvectors obtained using

96



CHAPTER 5. MULTI-STREAM: TESTING

Ta
bl

e
5.

8:
W

E
R

s(
%

)
of

st
re

am
-d

ro
po

ut
m

ul
ti

-s
tr

ea
m

sy
st

em
ob

ta
in

ed
by

us
in

g
se

ve
ra

l
A

E
P

M
m

od
ul

es
.

E
ac

h
of

th
e

A
E

P
M

m
od

ul
e

is
tr

ai
ne

d
on

P
C

A
tr

an
sf

or
m

ed
lo

gi
t-

po
st

er
io

rs
,

w
it

h
va

ry
in

g
th

e
P

C
A

di
m

en
-

si
on

al
it

y.
A

ll
th

e
m

od
el

s
in

th
e

sy
st

em
ar

e
tr

ai
ne

d
on

cl
ea

n
tr

ai
ni

ng
se

t
of

A
ur

or
a4

da
ta

se
t.

C
on

di
ti

on
St

re
am

-d
ro

po
ut

M
S

+
A

E
P

M

lo
gi

t-
po

st
.

lo
gi

t-
po

st
.P

C
A

20
04

D
10

00
D

50
0D

20
0D

10
0D

50
D

40
D

30
D

C
le

an
Sa

m
e

M
ic

cl
ea

n
2.

6
2.

7
2.

6
2.

6
2.

7
2.

7
2.

9
3.

1
3.

2
C

le
an

D
if

f.
M

ic
cl

ea
n

12
.8

19
.3

14
.4

12
.7

12
.9

12
.8

12
.7

13
.3

13
.8

A
dd

it
iv

e
N

oi
se

Sa
m

e
M

ic
ai

rp
or

t
31

.6
31

.3
29

.5
30

.2
31

.2
31

.1
30

.8
32

.7
32

.9
ba

bb
le

38
.6

43
.3

36
.5

37
.3

38
.1

38
.5

38
.2

38
.0

38
.2

ca
r

14
.9

17
.3

13
.6

11
.7

15
.4

15
.1

15
.0

12
.5

12
.6

re
st

au
ra

nt
40

.6
46

.6
42

.7
40

.8
40

.5
40

.7
40

.5
41

.8
42

.4
st

re
et

48
.5

65
.5

60
.3

47
.7

44
.1

44
.4

44
.3

42
.6

48
.6

tr
ai

n
48

.5
71

.2
64

.6
46

.4
45

.2
46

.0
45

.3
44

.3
47

.5
A

vg
.

37
.1

45
.6

41
.0

35
.7

35
.8

35
.9

35
.7

35
.2

37
.0

A
dd

it
iv

e
N

oi
se

D
if

f.
M

ic
ai

rp
or

t
46

.8
48

.4
45

.6
46

.2
46

.5
45

.8
46

.2
47

.7
47

.1
ba

bb
le

53
.9

64
.8

58
.0

53
.2

53
.1

53
.6

52
.2

52
.7

52
.1

ca
r

28
.0

36
.2

28
.5

25
.6

27
.5

27
.6

27
.2

27
.0

27
.8

re
st

au
ra

nt
55

.8
64

.6
57

.9
55

.0
55

.0
55

.0
54

.5
56

.5
56

.9
st

re
et

60
.6

76
.6

71
.0

59
.5

57
.4

57
.7

56
.7

56
.2

58
.9

tr
ai

n
59

.8
77

.6
73

.9
60

.1
57

.6
58

.4
57

.3
57

.2
58

.8
A

vg
.

50
.8

61
.2

55
.7

49
.8

49
.5

49
.6

49
.0

49
.5

50
.3

O
ve

ra
ll

A
vg

.
37

.3
46

.8
42

.0
36

.5
36

.2
36

.3
35

.9
36

.0
37

.2

97



CHAPTER 5. MULTI-STREAM: TESTING

number of dimensions
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

a
m

o
u
n
t 
o
f 
v
a
ri
a
b
ili

ty
 c

a
p
tu

re
d

0

10

20

30

40

50

60

70

80

90

100

x1000

Figure 5.8: Principal component analysis on logit-posteriors of DNN trained
on clean Aurora4 training set.

principal component analysis (PCA) of logit-posteriors. It is evident from the

figure that all the 2004 dimensions of posteriors are not required, as most of the

variability (80–90 %) is captured by first few hundred factors. It is worthwhile

exploring the option of using dimensionality reduction on logit-posteriors, as

only relevant dimensions are retained, resulting in a well trained autoencoders

in AE PM module. Table 5.8 shows the performance of several AE PM modules,

each of them with varying the number of PCA factors retained. Column 2 of the

table shows results of AE PM trained on logit-posteriors, whereas columns 3 –

8 show results of AE PM trained PCA transformed logit-posteriors. It is ev-

ident from the table using all the dimensions of PCA results in a significant

reduction in performance. However, instead of using all the dimensions, using

dimensions < 500 results in an improvement over logit-posteriors, with 50 di-
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mensions giving the best performance. The reason for this behaviour is that

the discarded dimensions are not informative as they have very less variance.

Removing these non-informative dimensions results in a better autoencoder,

thereby resulting in a better PM module. We hypothesize that other types of

transformations (e.g. LDA etc) can be used to obtain similar results. However

note that transforms like LDA require more data for reliable estimation.

Phone posteriors: Table 5.8 shows that AE PM module trained on dimen-

sionality reduced posteriors performs better than the one which uses all the

dimensions. The dimensionality reduction is performed using PCA. Another

way of reducing the dimensions of tri-phone posteriors is to convert them to

phone posteriors, by merging probabilites of tri-phones which belong to the

same phoneme class. Phone posteriors are smoother than tri-phone posteri-

ors, and these are shown to be performing better in the ∆M PM case. Also,

AE PM trained on phone posteriors of one dataset can be used to evaluate neu-

ral networks trained on another dataset (provided both the datasets are from

same language).

Comparison of AE PM module trained on tri-phone logit-posteriors

and phone logit-posteriors is shown in Table 5.9. It is evident from the ta-

ble that using phone posteriors results in a better AE PM module. AE PM can

be further improved by whitening the phone posteriors. Column 3 of Table 5.9
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shows results obtained by AE PM trained on PCA transformed phone logit-

posteriors. The reason for this improvement is due to PCA transform makes

the phone logit-posteriors more amenable to modeling by autoencoders. The

reason for this improvement is due to whitened logit-posteriors posteriors, us-

ing PCA transformation, are more amenable to modeling by autoencoders than

raw logit-posteriors.

Context modeling using autoencoders

In AE PM models used in the previous sections, the autoencoders are

trained to reconstruct a frame of posteriorgram (or its transformed version).

The models assume each posterior vector independent and does not account for

temporal dependecy between posterior frames. But the underlying signal is

speech, which is produced by the movement of vocal tract. Due to the inertia in

these movements, the vocal tract typically stays in a configuration for a certain

amount to time to produce a phoneme. And it slowly changes to a different

configuration, resulting in different sound unit. This is reflected in the clean

posteriogram obtained at the output of neural network as well (Fig. 5.3).

Therefore it makes intuitive sense that incorporating the temporal

structure of posteriors into AE PM models should result in a better perfor-

mance monitoring module. One, simple, way to integrate the temporal struc-
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Table 5.9: Comparison between AE PM modules trained on logit tri-phone
posteriors, logit monophone posteriors and PCA transformed logit monophone
posteriors. The models are trained on clean Aurora4 dataset.

Condition
Stream-dropout MS

AE PM
logit-post. phone-post logit phone-post logit PCA

Clean Same Mic
clean 2.6 2.6 2.8

Clean Diff. Mic
clean 12.8 11.7 12.1

Additive Noise Same Mic
airport 31.6 33.1 32.8
babble 38.6 40.0 39.2
car 14.9 12.8 13.3
restaurant 40.6 46.4 42.7
street 48.5 51.2 45.4
train 48.5 50.5 47.2
Avg. 37.1 38.8 36.8

Additive Noise Diff. Mic
airport 46.8 43.2 46.3
babble 53.9 50.2 49.4
car 28.0 23.4 25.0
restaurant 55.8 56.3 55.4
street 60.6 57.2 55.9
train 59.8 56.4 56.6
Avg. 50.8 47.8 48.1
Overall Avg. 37.3 37.0 35.9
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ture of posteriorgram is to train the autoencoder on a sequence of posterior

frames, rather than a single frame. In this scenario, the model emphasizes

stream combination which results in temporal structure similar to that of tem-

poral structure observed in training data. Table 5.10 shows results of several

AE PM models. Each of the models shown in table differ in the amount of con-

text used as input to the autoencoders. It is evident from the table that AE PM

models with context significantly outperforms AE PM models without context.

Also, a consistent improvement is observed till the context of 11 frames (110

milliseconds). Furthermore, adding more context is not resulting in an im-

provement and the performance is oscillating (11 frames = 34.2 %, 13 frames =

34.4 % and 15 frames = 34.1 %).

Training autoencoders on a context of frames is the first step in incor-

porating temporal structure in to AE PM models. The models can be further

improved by using recurrent layers (e.g. LSTMs) which are inherently good at

modeling the temporal structure. The models are not explored in this work,

and we plan to use them in future studies.

5.4 Combination of PM measures

In previous sections, we introduced two techniques to perform the task

of selecting optimal streams in multi-stream system. The techniques are re-
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CHAPTER 5. MULTI-STREAM: TESTING

Table 5.11: Performance comparison (WERs (%)) of rank based combination of
∆M PM and AE PM measures.

Condition Stream Dropout DNN
w/o PM ∆M PM AE PM ∆M PM+AE PM

Clean Same Mic
clean 2.6 2.6 2.7 2.6

Clean Diff. Mic
clean 19.8 12.8 11.7 11.5

Additive Noise Same Mic
airport 32.1 30.6 31.2 30.5
babble 38.6 37.2 37.4 37.1
car 18.5 14.6 11.5 13.2
restaurant 40.8 40.6 41.0 40.7
street 42.6 40.3 40.5 39.6
train 44.3 42.4 42.8 42.6
Avg. 36.1 34.2 34.0 33.8

Additive Noise Diff. Mic
airport 47.9 45.0 44.3 44.4
babble 54.2 49.1 49.0 49.2
car 33.7 24.5 22.7 23.6
restaurant 56.0 53.0 54.1 53.0
street 59.1 53.7 53.9 53.0
train 58.1 52.8 54.0 53.1
Avg. 51.5 46.3 46.3 46.1
Overall Avg. 37.6 34.2 34.1 33.8
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ferred to as ∆M PM and AE PM. The ∆M PM emphasizes stream combination

which results in a posterior frames which have greater within-class and across-

class separability. Whereas, AE PM measure emphasizes stream combination

which results in posteriors similar to that of training data. The fundamental

principles of these two measures are different, so it is natural to assume that

the fusion of these techniques should result in a better performance monitoring

module. In this section, we present experiments aimed at combining the two

techniques.

In order to make the problem more abstract, we introduce the follow-

ing notation. Let us assume the multi-stream consists of K streams, resulting

in N = 2K−1 stream combinations. Given a test utterance, the stream-dropout

multi-stream system generates N posteriograms P1, P2, · · ·Pn · · ·PN . We use

performance monitoring module to select the best posteriogram and give it as

input to decoder (to generate lattice). More formally, the best posteriogram is

defined as

Pfinal = arg max
P∈{P1,P2,··· ,PN}

s(P ) (5.13)

where s() is a scoring function, implemented using PM module, described in the

above section.

The above equation can be modified to account for multiple perfor-
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mance techniques as:

Pfinal = arg max
P∈{P1,P2,··· ,PN}

g(s1(P ), s2(P ), · · · sM (P )) (5.14)

where M is number of PM techniques and g() is a scalar valued function which

combines the individual PM scores (si(P )).

The simplest way of combining the two proposed PM techniques is to

add their scores s1(P ) and s2(P ). The main issue with this combination is that

the combined score can be biased towards one of the measures, because of the

difference in dynamic ranges of the scores.

We propose to use rank based combination to combine the scores from

the PM modules. In this method, the combined scores are computed as follows:

RP (g) = (ΠM
m=1rg,m)1/M (5.15)

where rg,m rank of mth PM measure and gth stream combination. The choice of

using rank based combination is guided by two factors: (i) Different scales: (ii)

The issue with different scales of the scores can be normalized using Z-norm

( [77,78]). But the scores are most often non-Gaussian in nature, and multiple

PM methods can produce which are distributed differently. The advantage of

using rank based combination is it is non-parametric in nature, as it depends
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only on the ranks of individual scores. Table 5.11 shows results of combination

of the measures.

It is evident from the table that combining both the measures further

improve overall average performance (34.2 % to 33.8 %). Also, it can be ob-

served from the table that the combination improves only in cases when both

∆M PM and AE PM are performing comparably. In cases where one of the

measure is considerably worse than the other, combination WER is close to

mid-point. This shows there is further scope of improvement in combination.

One possible extension is to assign an exponent parameter to each individual

rank, and tune this parameter.

5.5 Improving test time complexity

For a given test utterance, we need to identify stream combination

which results in lowest error-rate. In previous works [2, 44, 74], posteriors of

all the stream combinations are evaluated using performance monitoring tech-

nique. In this approach, number of forward passes required to identify best

stream combination increases exponentially with number of streams. For ex-

ample, a 7-stream system requires 127 forward passes [2]. The large number

of forward passes at test time can deter practical applicability of the system.

In this section, we propose a technique to reduce the test time com-
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Table 5.12: WERs (%) obtained by proposed combination pruning algorithm
and evaluating all possible stream combinations.

Condition all combination topN=1
Clean Same Mic

clean 2.6 2.6
Clean Diff. Mic

clean 10.1 10.2
Additive Noise Same Mic.

airport 30.0 30.0
babble 36.2 36.5
car 13.7 13.8
restaurant 39.9 39.8
street 37.6 37.5
train 39.0 39.4
Avg. 32.7 32.8

Additive Noise Diff. Mic
airport 43.9 43.9
babble 48.1 48.4
car 22.2 22.6
restaurant 51.9 51.9
street 52.9 53.3
train 51.4 51.5
Avg. 45.2 45.4
Overall Avg. 33.1 33.2
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plexity of multi-stream system. The technique is based on the idea that stream

combinations can be organized into a tree, where each node represents a stream

combination. Figure 5.9 shows an example organization of stream combina-

tions in a tree. Using this organization, we introduce parent, child relation be-

tween stream combinations. We traverse the tree from root node to leaf nodes,

and at each step we prune the possible stream combinations, based on per-

formance monitor scores. Pseudo-code of the search algorithm is described in

algorithm 1. Using the algorithm, we reduce the worst-case complexity from

O(2N ) to O(N2) number of evaluations, where N . In practice, number of eval-

uations required are much fewer than O(N2). For the 9-stream system used in

table 5.12, number of evaluations required to find best stream combination are

≈ 30.

Table 5.12 shows WER results obtained by proposed combination prun-

ing algorithm, with topN = 1. That is, at each stage of the tree we only consider

best combination and proceed down. It can be observed from the table that

the performance degradation is very small compared to evaluating all possible

combinations. This shows that proposed technique is effective in selecting good

stream combinations with significantly less number of evaluations.
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1 parent node = root node ;
2 parent score = root score ;
3 FindBestChildNode(parent node, parent score)
4 compute scores of all child nodes ;
5 if parent score ≥ max(child scores) then
6 return (parent node, parent score) ;
7 else
8 best child node = (child node with score ==

max(child scores)) ;
9 FindBestChildNode(best child node,

best child node score) ;
10 end
11 end

Algorithm 1: Search algorithm used to find best stream combina-
tion. In our implementation root node refers to combination where
all the streams are present.

5.6 Conclusions and Future work

In this chapter, we proposed two new performance monitor techniques,

∆M PM and AE PM. Motivation for ∆M PM is that for a clean signal, diver-

gence between within-class posterior frames should be lower than across-class

posteriors. The measure is defined as the difference between average across-

class and within-class divergences. The AE PM is based on the principle that a

classifier performs best on data similar to its training data. An autoencoder is

used to model training data posteriors of the classifier, and reconstruction error

of the test data is used as measure to select the streams. We also proposed a

technique to combine the proposed measures. The combination method is based
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on rank of the individual measures, which makes it usable for combining any

number of heterogeneously distributed performance monitor methods. Finally

a method is proposed to rapidly identify the optimal stream combination, which

obviates the need to search all possible combinations.

Experimental comparisons carried out in a multi-stream phoneme recog-

nition paradigm demonstrated the effectiveness of the proposed measures. The

proposed measures yielded improvements over the existing measures, and achieved

almost the same performance as the oracle performance. In addition, the stream

selection framework with proposed uncertainty estimation performed more ro-

bust against noise than the conventional multi-condition training approach.

The measures were shown to generalize well to multi-stream LVCSR system

developed on AURORA4 database.

Although AE PM is shown to be best of the techniques, we observed

the technique to be highly sensitive to its hyper-parameters. This needs to

be addressed as it involves tuning the model when the acoustic model and/or

dataset is changed. Exploring methods to make AE PM stable is required. This

can be done by employing other kinds of architectures, different cost functions

etc. Also approaches to further improve the run-time speed is required.
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Figure 5.9: Illustration of tree organization of all possible stream combina-
tions.
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Chapter 6

Summary and Future

Extensions

In this chapter, we summarize the important contributions of the thesis.

We discuss limitations of the proposed techniques. Also, we present a discussion

on future directions to address the limitations and further improve the multi-

band ASR for noise robust speech recognition.

6.1 Contributions of the thesis

In order to highlight the main contributions of the thesis, we provide

a summary table (Tab. 6.1) which shows the improvements obtained by using
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Table 6.1: Comparison of WERs obtained in Aurora4 test set, with the models
trained on Aurora4 multi-condition data. The table highlights the improve-
ments obtained by proposed techniques (columns 4 and 5). Also, the scope of
potential improvement is illustrated by using oracle performance monitor (col-
umn 6).

DNN Multi-band Multi-band+stream-dropout
w/oPM AE+∆M PM oraclePM

Clean 4.2 3.9 3.9 4.0 1.7
Clean+Diff Mic 11.7 9.6 6.4 5.9 3.1
Noise 8.1 6.6 5.8 5.8 3.8
Noise+Diff Mic 21.8 17.2 15.2 13.3 8.6
Overall Avg. 13.6 10.9 9.6 8.8 5.7

each of the proposed techniques.

WERs in column 2 (labelled DNN) show the results obtained by using

a standard deep neural network (DNN) model. We used a fully connected model

with 6 hidden layers, with each hidden layer consisting of 1500 ReLU neurons.

This system forms the conventional architecture for acoustic model in most of

the ASR systems. Column 3 shows the results of architecture, which is similar

to the one used in past multi-band studies. The main difference between DNN

and multi-band systems is, the initial layers of multi-band system are localized

to one sub-band. This makes the features obtained from these layers to be unaf-

fected by distortions in other sub-bands, thereby preserving the robustness. In

Aurora4 test set, multi-band architecture results in a significant improvement

≈ 20 % relative reduction in WER. Models in column 2 and 3 form the baselines

for proposed techniques in the thesis.
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Column 4 shows the WER results obtained by application of stream-

dropout technique to multi-band system in column 3. This is the first of the

two proposed techniques of the thesis. It can be observed from the table that

by application of stream-dropout we can further reduce the WER from 10.9 to

9.6 % (≈ 12 % relative reduction in WER). Note that since all other parameters

(number of weights, training data, cost function etc) are same as that of multi-

band system, it can be concluded that the improvement is mainly due to stream-

dropout training of the model.

Results in columns 5 and 6 shows that performance of the system can

be further improved by using performance monitor techniques to select opti-

mal sub-bands. Performance of proposed PM methods is shown in column 5. It

can seen from the table that application of PM methods can improve the per-

formance by ≈ 8.3 % relative (9.6 to 8.8 %). Note that, typically PM method

can select different sub-bands for every utterance. This makes intuitive sense

as each test utterance has different kind of noises. The final column in the ta-

ble (column 6) shows the WERs obtained by using oracle performance monitor.

Results in this column are obtained by decoding a given utterance for each sub-

band combination and selecting the combination which results in lowest WER.

Using oracle PM, we obtain a significant 35 % relative reduction in WER. This

is to demonstrate the upper-limit of the multi-band system with perfect perfor-
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mance monitor.

All the contributions of the thesis can be grouped into a new multi-band acous-

tic model, and improvements to multi-stream acoustic model training and test-

ing.

• New multi-band acoustic model (Chap. 3, Sec. 3.2): The main differ-

ence between proposed multi-band and the ones used in [43, 44, 49] is all

the networks in the multi-band system are trained jointly, while still re-

taining robustness to coadaptation across sub-bands. This is performed by

an end-to-end training of the network parameters (joint training) and em-

ploying a stream-dropout component while concatenating features from

sub-band specific networks (reduces coadaptation).

• New multi-stream architecture (Chap. 4, Sec. 4.3): Past multi-stream

architecture employs one classifier for each stream combination. While

this architecture is manageable to build acoustic models using small num-

ber of streams (3 – 5), the complexity explodes with increasing the num-

ber of streams. We show that the stream-dropout technique, proposed

for multi-band AMs, can be used to significantly reduce the parameters

involved in conventional multi-stream system without any degradation.

Even though the comparison is performed on sub-band streams, this ap-

proach is applicable to any kind of streams.
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• Two performance monitor techniques (Chap. 5): Proposed ∆M PM

improves over M-measure by incorporating probability of frames sepa-

rated by ∆t belonging to the same phone class (Chap. 5, Sec. 5.2.2). The

second method is an extension to GMM based performance monitor [67],

where GMMs are replaced with autoencoders to model the training data

posteriors (Chap. 5, Sec. 5.3 ). Extensive experiments were performed

to find the optimal hyper-parameters settings of autoencoders (Chap. 5,

Sec. 5.3.3). The techniques are then applied to proposed stream-dropout

multi-band system to further improve its robustness (Chap. 5, Sec. 5.3.3).

• Rank-based combination of PM measures (Chap. 5, Sec. 5.4): A

rank-based technique is proposed to combine various performance mon-

itor measures. Since the combination is based on ranks, it is robust to

dynamic range of individual measures. A mathematical formulation is

proposed to combine heterogenously distributed PM measures.

• Improving test time speed (Chap. 5, Sec. 5.5): In past multi-stream

works [2, 49], optimal stream combination is identified by computing PM

score for all possible stream combinations. This brute force approach can-

not be applied in the case where more than 9 streams are used. In this the-

sis, a search algorithm is proposed which massively decreases the num-

ber of computations involved. The stream combinations are organized in
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a tree structure, and at each stage improbable (defined by low PM score)

combinations are pruned.

6.2 Future research directions

Band-definition: The width of sub-bands in the experiments are 1 – 3

Bark critical band long. However we observed that the sub-band defini-

tion is critical to multi-band system’s performance. The hypothesize is,

this might be due to type of colored nature of the test noisy conditions.

Further analysis of this aspect is required to obtain a more robust sys-

tem.

Recurrent models: All the experiments performed in this thesis used

feed forward neural networks (i.e. DNNs or CNNs). Most state-of-the-

art speech recognition systems use some for recurrent architectures (e.g.

RNNs, LSTMs, LSTMPs etc). Application of recurrent models in multi-

band architecture needs to be explored. One approach is to replace the

feed-forward models in sub-band networks with recurrent models, and

the sub-band features are then provided as input to fusion network. A

fully recurrent model can also be explored by replacing all the networks

with recurrent networks.
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Different types of streams: The proposed techniques, both the training-

time and test-time ones, are evaluated using sub-band streams and noise-

specific streams. Analysis of proposed multi-stream system, with other

kinds of streams (e.g. temporal modulation streams, spectro-temporal

modulation streams) is required.

Hyper-parameter settings for autoencoders: Comparison experiments

of various PM techniques showed that autoencoders based performance

monitor is the best performing measure. However the measure is ob-

served to sensitive to hyper-parameter settings used to train autoencoders.

Stabilizing the autoencoders is necessary to quickly adapt to different

databases.

Exploring different types of autoencoders: Modeling long-term pos-

terior trajectories is performed by simply concatenating the posterior frames.

Recurrent architectures might be better suited for this task as they are

more flexible and can ingest large amounts of data more effectively. Also,

in this thesis we used mean-squared-error as the cost function to train the

autoencoders. Other ways of modeling the posteriors might further im-

prove the performance of autoencoders, such as variational autoencoders,

generative adversarial networks etc.
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