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ABSTRACT

Robustness of automatic speech recognition (ASR) to acoustic mis-
matches can be improved by multistream framework. Frequently
used approach to combine decisions from individual streams in-
volve training large number of neural networks, one for each pos-
sible stream combination. In this work, we propose to simplify the
fusion by replacing the large number of fusion networks with a sin-
gle fusion network. During training of the proposed fusion network,
features from a stream are randomly dropped out. At test time, cor-
rupted streams are identified and dropped out to improve robustness.
Using the proposed approach, we were able to achieve significant re-
duction in number of parameters, while remaining in less than 2.5 %
relative degradation of conventional fusion technique. Furthermore,
proposed fusion network is also applied in a multistream ASR sys-
tem to improve noise robustness of Aurora4 speech recognition task.
Noticeable improvements were observed over baseline systems (rel-
ative improvement of 9.2 % in microphone mismatch and 3.2 % in
additive noise conditions).

Index Terms— multistream ASR, performance monitoring,
stream fusion, deep neural networks

1. INTRODUCTION

Performance of automatic speech recognition (ASR) technology im-
proved significantly with emergence of deep neural network (DNN)
models. Despite huge improvements, the technology is sensitive to
acoustic mismatch between train and test data sets. Robustness to
acoustic mismatches can be improved using multistream automatic
speech recogntion (ASR) framework [1, 2].

Multistream framework involves constructing multiple parallel
information processing streams, where each stream is attending to
different part of the signal space, and adaptive fusion of decisions
from the streams [3]. The fundamental motivation behind multi-
stream recognition is, noise or environmental distortion effects only
few parts of the signal space (e.g. frequency bands or spectro-
temporal freqgency bands). The portions which are less corrupted can
be identified and decisions from these streams can be emphasized.
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In order to build a multistream system one needs to deal with
the following issues [3]: Formation of streams: streams which are
conditionally independent as much as possible, while retaining some
cues for recognition of message. Identification of streams: accu-
rate identification of streams that are less corrupted for a given test
signal. Fusion of streams: finding combination of streams which
gives the best result.

Many previous implementations of multistream system used
streams which are localized to few frequency bands [4, 5, 6, 7]. More
general ways forming streams have also been studied. These include
streams covering different portions of temporal modulations [8, 9],
spectro-temporal (2-D) modulations [10, 11, 12], etc. Several tech-
niques have been proposed to identify robust streams [6, 13, 14].
These are primarily based on output of neural network classifiers.
The next stage of the processing involves fusion of decisions from
the streams. Hermansky et. al. [2] investigated various fusion strate-
gies and found out that neural network based fusion is most effec-
tive. Application of neural network fusion in multistream is done
by formation all non-empty combinations of features/decision from
streams, and training a separate neural network for each combina-
tion. This results in large number of fusion networks. For example,
[2, 15] used a 7 sub-band system, which requires 2° — 1 = 127 fu-
sion networks. The large number of neural networks can increase the
complexity of the system, making training and testing time consum-
ing. It can also deter practical applicability of multistream system.

In this paper, we attempt to reduce the complexity of the fu-
sion stage. Multiple neural networks used in fusion stage are re-
placed by a single neural network. Input to proposed fusion net-
work is formed by concatenation of features from the streams. Dur-
ing test, features from the corrupted streams needs to be discarded.
This can achieved by dropping out (i.e. multiplyling with zero) de-
cisions/features from the corrupted streams. A test vector having
portion of its input dimensions as zeros can break down the fusion
network. We hypothesize that, the breaking down can be avoided if:
during training, the network sees partially zeroed out input vectors.
We show that this can be achieved by training fusion network with
randomly switching-off features from a stream.

The rest of the paper is organized as follows. In section 2, mul-
tistream ASR architecture used in previous works is described. Sec-
tion 3 describes the proposed fusion network. Section 4 presents the
comparison study of proposed fusion network. Noise robust exper-
iments are presented in section 5. In section 6, we conclude with a
brief discussion of the proposed method.

2. MULTISTREAM ASR

Figure 1 depicts the block diagram of a multistream system, similar
to the one used in [15]. For simplicity, we illustrated a system with
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Fig. 1. Block diagram of past multistream system, based on 2 sub-bands. The architecture is similar to 7 sub-band architecture used in [2, 15]

2 streams. The first stage involves forming band-limited streams.
Speech signal is divided into two sub-bands, covering low-frequency
and high-frequency portion of the signal. Acoustic features corre-
sponding to the streams are extracted and a DNN is trained in each
stream.

The second stage involves fusion of decisions from streams of
the first stage. For a test signal, the fusion module should evaluate
reliability of all streams, and perform combination such that infor-
mation from reliable streams are amplified. Linear fusion studied in
[2, 16, 13, 17] involves computing a weighted average of phoneme
(or log-phoneme) posterior probabilities, where the weights are pro-
portional to reliability of streams. Linear fusion is a simple strategy,
but it does not account for complementary information present in
streams. In order to achieve this, [2] proposed to use neural networks
for non-linear fusion of streams. Neural network fusion involves
constructing all possible nonempty combinations of decisions from
first stage streams, and training a DNN on each combination. This
results in a significant increase in complexity. The massive number
of fusion networks can deter the application of multistream system
to large scale scenarios and practical scenarios. In this work, we
propose a new fusion approach which involves training a single fu-
sion network. From here on we refer to fusion using multiple neural
networks as Multi_Nnet_fusion.

3. PROPOSED FUSION NETWORK

We propose to replace multiple fusion networks present in full com-
bination multistream system with at single neural network. Input
feature vector to the proposed fusion network is formed by stack-
ing features from first stage processing. During test, when some of
the streams are corrupted, robustness can still be retained by drop-
ping out (i.e. multiplying with zero) feature vectors from corrupted
streams. The fusion neural network can break down if it sees a test
vector with some of its elements as zeros. We avoid this by randomly
dropping out features of a stream during training. This forces the net-
work to learn to classify even when part of test vector is zero. The
proposed training procedure is illustrated in figure 2. Each stream
is dropped-out with probability equal to 0.5. Proposed fusion tech-
nique is referred to as Single_Nnet_fusion.

The proposed approach is motivated from dropout learning used
to regularize DNNs. The differences between dropout learning [19]
and proposed training technique are:

* Dropout is applied to all neurons units in all layers (input and
hidden). In the proposed technique dropout is applied only to
input layer.

* Input neurons belonging to a stream are dropped out together.
In dropout each neuron is independently dropped out.

The resulting fusion network can be seen as training a collection
of 2¥ — 1 neural networks with weight sharing. During test, we
employ a performance monitoring technique to identify combination
of streams which gives lowest error rate.

4. COMPARISON EXPERIMENTS

In this section, we compare Single_Nnet_fusion with
Multi_Nnet_fusion. Aim of the experiments to study whether we can
achieve word-error-rates (WERSs) close to Multi_Nnet_fusion, using
Single_Nnet_fusion.

4.1. Experimental setup

We used Aurora4 [21] database to compare Multi_Nnet_fusion and
proposed Single_Nnet_fusion.

Aurora4 task is a small scale (14 hour), medium vocabulary
speech recognition task, aimed at improving noise and channel ro-
bustness. The database is based on the DARPA Wall Street Journal
(WSJO) corpus which consist of clean recordings of read speech,
with 5000 word vocabulary size. The training set consists of 14
hours of clean speech from 83 speakers, sampled at 16 kHz. The
test set consist of 330 recordings from 14 conditions. Each condi-
tion include clean testing with same microphone, clean testing with
different microphone, 6 additive noise conditions which include air-
port, babble, car, restaurant, street and train noise at 5-15 dB signal-
tonoise ratio (SNR) and 6 conditions with the combination of addi-
tive and channel noise.

Architecutre of DNN models used in the present work consist
of 4 hidden layers. Each hidden layer consist of 1024 Simoidal neu-
rons. Context dependent tri-phone targets are used to as targets while
training DNN models. The targets are generated using a HMM-
GMM system trained on MFCC features. HMM-GMM system is
implemented using Kaldi speech recognition toolkit [22], and DNN
models are trained using Theano toolkit [23, 24].

The acoustic feature used to train DNNs at the first stage of
multistream system are based on Frequency-domain linear predic-
tion (FDLP) processing of speech. The time-domain signal is trans-
formed into frequency domain by using a discrete cosine transform
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Fig. 2. Mlustration of multistream system with proposed fusion network. (a) During training, features from a stream are randomly dropped-out
with probability 0.5. (b) During testing, streams are dropped-out deterministically by performance monitor techniques.

Table 1. Comparison of proposed fusion and past fusion approach,
for 2-stream system.
[ [ LF+HF [ LF | HF |

Multi_Nnet_fusion 4.95 8.39 | 12.07
Single_Nnet_fusion 5.06 8.56 | 13.19

(DCT) transform. Sub-band DCT coefficients are computed by win-
dowing the full-band DCT signal. Hilbert envelopes of sub-band sig-
nals are estimated using linear prediction of DCT signal, resulting in
FDLP envelopes. In each sub-band, the estimated envelopes are log-
compressed and temporal modulation coefficients corresponding to
0-35 Hz modulation frequencies are computed. These are used to
train DNN models used in the present work.

4.2. 2-streams:

A 2-stream system is constructed by using sub-bands covering first
three critical bands as low-frequency stream and next two critical
bands as high-frequency stream. FDLPM features from the streams
are used to multistream system. We first show the comparison re-
sults on clean test set of Aurora4 database. Table 1 show the com-
parison between WER values of multistream systems implemented
using Multi_Nnet_fusion and Single_Nnet_fusion. The second col-
umn (under LF+HF) of table 1 represent WER of clean test set
obtained when both the streams are used. That is: in the case of
Multi_Nnet_fusion, WER value obtained from fusion network trained
on feature vectors obtained by stacking features from both low and
frequency streams. In the case of Single_Nnet_fusion, when both
the streams are switched-on. The third column represent WER val-
ues obtained when only low-frequency stream is used. That is, in
the case of Multi_Nnet_fusion, WER value obtained from fusion net-
work which is trained only on low-frequency stream. In the case
of Single_Nnet_fusion, WER value obtained by switching-on low-
frequency stream and switching-off high-frequency stream. Simi-
larly, fourth column represent WER value obtained by using only
high-frequency stream. From table 1, it is evident that WER values
from Single _Nnet_fusion are close to Multi_Nnet_fusion architecture.
We reduced number of parameters by a factor of 3 with an average
absolute degradation of 0.46 % and average relative degradation of
4.67 % in performance.

4.3. More streams:

Performance of Single_Nnet_fusion in 5-stream and 7-stream cases
is analyzed in this section. Table 2 show the degration observed by
employing Single_Nnet_fusion instead of Multi_Nnet_fusion in 2, 5,

Table 2. Relative difference between WERSs of multistream systems
implemented using Multi_Nnet_fusion and Single_Nnet_fusion.
[ 2-streams [ 5-streams | 7-streams |

[ 467 | 1134 | 1392 |

and 7 sub-band systems. It is evident from the table that, as we in-
crease the number of streams, perforamance of Single_Nnet_fusion
is decreasing. We hypothesize the reason for this degradation is
relatively fewer number of examples of a particular of input vector
type is seen during training. In the case of 2-stream system, the fu-
sion network sees one-third of times full feature vector, one-third of
times feature vector with high frequency stream dropped out, and the
other one-third of times low frequency stream dropped. Whereas in
case of 5-stream and 7-stream systems, each input type is seen only
1/31 times and 1/127 times, resepectively. This issue can be cir-
cumvented by presenting the training data multiple number of times,
resulting in more examples of a input type. Relative degradation
with number of iterations through training data per epoch is shown
in figure 3. It is evident from the figure that going through training
data multiple number of times per epoch increases performance of
Single_Nnet fusion, supporting our hypothesis. With 2-3 iterations
per epoch, we were able to achieve performance close to 5 % of
Multi_Nnet_fusion, with a significant decrease in the number of pa-
rameters, (1/31 in 5-stream case and 1/127 in case of 7-stream case).
In the case of 2-streams, the performance after 5 iterations might be
due to overfitting of neural network on the training data. This shows
that the choice of number iterations depends on number of streams,
as well as on the amount of training data.

5. NOISE ROBUST EXPERIMENTS

In this section, we compare noise robustness of multistream sys-
tem with Single_Nnet_fusion with various other baseline fea-
tures. Similar to previous section, we use Aurora4 clean training
set to train the models. The test set consist of original Aurora4 test
set (clean and noise) and an artificially corrupted test test. The arti-
ficial test set consist of two band-pass filtered exhibition hall noises
from NOISEX database. They are designed to corrupt streams cov-
ering the low-frequency portion of the signal, i.e. streams 1 and 2.
These are added at -20 dB signal-to-noise ratio to clean test set. This
guarantees at least few of the streams remain uncorrupted by noise,
satisfying the basic premise of multistream system.

We used a HMM-DNN system trained on Mel filter bank en-
ergies (MFBE) as one of the baseline systems. The MFBE system
is trained on 40 dimensional filter bank energies, with a 21 frame
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Fig. 3. Single_Nnet_fusion can be further improved by presenting
training data multiple number of times per epoch. Relative differ-
ence between Single_Nnet_fusion and Multi_Nnet_fusion with num-
ber of iterations per epoch.

context. Speaker based mean normalization is applied to the input
features. In order to analyze the effectiveness of multistream sys-
tem, we also compare with singlestream system based on FDLPM
features (SS_FDLPM).

For the multistream system, we train a 5-stream system similar
to the one described in previous section. The 5-streams consist of
sub-bands covering 15 critical bands (each stream covers 3 critical
bands). FDLPM features extracted from each sub-band and are used
to train a DNN. TANDEM features are extracted for each stream
from the first stage DNNs. The TANDEM features are concatenated
to form feature vector for the second stage DNNs. The singlestream
system (SS_FDLPM) shown in table 3 models the concatenated in
the standard way.

We use the technique proposed in Sec. 3 to train a multistream

system. Input representation for the multistream system is concate-
nated feature vector from the first stage TANDEM features. During
test time, we use M-delta measure [25, 26] to estimate quality of
posteriors of each stream combination.
M-delta performance monitor: Main idea behind the measure is
as follows: posterior vectors belonging to the same class should
have smaller divergence than the divergence between posterior vec-
tors belonging to different classes. M-delta measure is defined as
Mdelta = M*® — M™¢, where M*® and M™° represent the ac-
cumulated KL-divergence computed from a data pair from the same
class and that from a data pair from different classes, respectively.
M?€ and M€ are estimated from M measure [20]. For a test utter-
ance, an M-delta measure is computed for each stream combination.
Posteriors from stream combination having highest M-delta measure
are selected, converted into pseudo-log-likelihoods and given as in-
put to recognizer.

It is evident from table 3 that multistream system performs bet-
ter than MFBE system in all the conditions. In the synthetic noisy
conditions, synth1-20dB and synth2-20dB, performance is signifi-
cantly better than single stream systems. This shows that, when the
noises satisfy the assumption of multistream system, we can achieve
significant robustness. It performs better than SS_FDLPM in most of
the conditions, except Babble and Restaurent. This might be due to
wide-band nature of these noises, where all the streams get corrupted
and none of the combination matches with training statistics. We
also observe noticeable improvements in microphone mismatch con-
ditions. The improvement is significant compared to MFBE. This
might be due to robustness of FDLPM features. The improvement
over SS_FDLPM system in microphone mismatch conditions could

Table 3. Word error rate (%) in synthetic band-limited noises and
Aurora-4 test sets, using various features. The systems are trained
using clean training test.

MFBE

SS_FDLPM Multistream
with proposed

fusion

] Synthetic noise corrupting only low-frequencies [

synth1-20dB 78.68 60.99 9.43
synth2-20dB 80.78 20.51 14.96
] Aurora4 noises [
] Clean Same Mic [ 3.75 [ 4.89 [ 4.41 [
] Clean Diff Mic [ 17.35 [ 14.53 [ 12.98 [
] Additive Noise Same Mic [
Airport 39.60 34.17 31.29
Babble 44.09 39.08 39.19
Car 20.19 15.47 13.24
Restaurant 46.24 36.11 36.61
Street 54.79 45.82 44.95
Train 51.52 45.10 43.45
[ Avgerage [ 4273 [ 3596 | 34.79 ]
[ Additive Noise Diff. Mic ]
Airport 52.03 45.90 40.16
Babble 54.14 51.75 46.39
Car 32.54 28.10 22.29
Restaurant 57.65 48.42 46.10
Street 61.95 54.96 51.99
Train 59.01 55.54 51.43
| Average [ 5283 [ 4745 | 43.06 ‘

be due accurate selection of good combination by performance mon-
itoring.

6. CONCLUSIONS

In this paper, we simplified neural network fusion in multistream
speech recognition framework. The proposed fusion network is
trained by randomly dropping out features from streams. This forces
the network to learn to classify even when some of the streams are
dropped out. During test, the choice of streams to drop is determined
by performance monitor technique. The proposed technique signifi-
cantly reduces the number of parameters used conventionally, by re-
placing multiple neural networks in fusion stage with a single neural
network. This resulted in parameter reduction by factors of 3, 31 and
127 in 2-stream, 5-stream and 7-stream cases, respectively. The pro-
posed techinque is with in 3 % relative degradation in 2-stream and
S-stream cases and 7.5 % relative degradation in 7-stream case, com-
pared conventional fusion which involves multiple neural networks.
We have also shown that the degradation can be further reduced, by
presenting the triaining data multiple number of times per epoch.
We implemented a 5 sub-band multistream system, with pro-
posed fusion network in noise robust ASR task. For frequency local-
ized noises, which satisfy multistream assumption, significant im-
provements were observed. For wide-band noises, we did not ob-
served any improvements over single stream FDLP features. This
is expected since, any combination of input streams does not result
in matching with training statistics of output posterior vectors. Ro-
bustness in these noisy conditions can be improved by using more
general streams which are localized in spectro-temporal space. The
proposed fusion method can be applied to these streams as well.
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