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Abstract—A new efficient measure for predicting estimation ac- are likely to belong to different phonemes. However, the M-
curacy is proposed and successfully applied to multistream-based measure does not explicitly consider more detailed information
unsupervised adaptation of ASR systems to address data uncer- about the phonemic structure of speech.

inty when the ground-truth is unknown. The pr m r .
itga;yexteensitor?c?f?#e S/I:[rrl;léassulrje,wﬁich pregigtsoggﬁggensgisr?tﬁe, The present_ study builds on the M—m.easure to _develop
output of a probability estimator by measuring the divergences improved confidence measures for use in the multistream-
of probability estimates spaced at specific time intervals. In based adaptation of recognizers that are robust against noise.
this study, the M-measure was extended by considering the A new version of the M-measure is proposed that explicitly
latent phoneme information, resulting in an improved reliability. {4165 into account the probability that distant frames have
Experimental comparisons carried out in a multistream-based different phoneme labels, providing a more accurate indicator
ASR paradigm demonstrated that the extended M-measure yields - - v FE 5
a significant improvement over the original M-measure, especially Of the estimator’s ability to distinguish between phonemes. The
under narrow-band noise conditions. proposed technique for the confidence estimation is evaluated
using a multistream-based adaptation paradigm [7], which is
directly applicable to the current DNN-based ASR systems.
Automatic speech recognition (ASR) systems and otherThe paper is organized as follows. Section Il gives an
stochastic machines simply make their best guess on the basisrview of the relevant previous work on the prediction of
of the data on which they were trained when attemptirthe estimation accuracy and the multistream-based paradigm
to recognize data during test time. Perfect learning couild ASR. Section Ill describes M-delta, our extension of the
theoretically be achieved using infinitely large samples of datécmeasure. Sections IV and V demonstrate that this M-delta
that cover all possible types of unexpected harmful variablesasure is effective for use as an accuracy predictor and
that could be encountered during run-time of the recognizecsn be successfully applied to two types of multistream-based
but in practice such an ideal learning is impossible. Creatirglaptation of ASR systems. Section VI concludes this paper.
ASR systems that adapt to the environmental changes provides
a way to address this fundamental machine learning weakness.
Human listeners are able to estimate their confidence An Prediction of estimation accuracy
their decisions when perceiving degraded speech data, where&everal attempts have been made to predict the estimation
ASR systems would poorly perform, even when the answaccuracy of ASR systems. We refer to these predictors as
is not knowna priori [1], [2]. Techniques for predicting the “performance monitors.” Okawa et al. [8] used the entropy
accuracy of an estimator based on its output (e.g., estimate®bthe estimator outputs as a performance monitor. Ikbal et
phoneme posterior probabilities) have played an important rae [9] and Kubo et al. [10] used this measure for combining
in the unsupervised adaptation of ASR systems. For exampiesults from multiple ASR systems for noise robust ASR.
confusion networks [3] have been used to predict the accurddgsgarani et al. [11] and Badiezadegan et al. [12] computed
of each phoneme or word [4], [5]. Other measures that attee distance in the autocorrelation of the phoneme posterior
computed over several seconds of speech (e.g., an utterapecebabilities between training and testing data. In addition,
can yield more reliable predictions of the estimation accuradyariani and Hermansky [13] used the Mahalanobis distance
The mean temporal distance (denoted as the “Mn the logarithmic posterior space between training and testing
measure”) [6], which evaluates the averaged dissimilarities data. The experimental results indicated that these criteria as
the probability estimates spaced over several time spans, is angerformance monitor worked reasonably well but required
such measure that has been proven to be effective in predicttngninimum of four seconds to obtain stable estimates of
the estimation accuracy. This method makes use of the féoe probability distribution for posterior data. Ogawa et al.
that the vectors of the phoneme probability estimates sho(id!] demonstrated that the likelihoods computed from the
be dissimilar between the distant frames of speech, whiG@aussian mixture model of the classifier outputs could be

I. INTRODUCTION

Il. RELEVANT PREVIOUS WORK



computes the difference in divergences coming from the same
phoneme as well as different phonemes. This section briefly

Fig. 1. Schematic diagram of multistream-based adaptation paradigreXPlains the original M-measure and describes the extended

Uncorrupted streams are selected from all band-limited streams on basisMtmeasure in detail.
performance monitor and then fused.

- Performance [1l. EXTENSION OFM-MEASURE
o Monitoring
lr An attempt has been made to extend the M-measure. The
—3 Phoneme _ongma_l M-measure e_valuate_s the dlvergenc_es in probabil-
Speech _ . 1 Fusion seduence ity estimates across times without any consideration of the
Signal H H . . .
) i phoneme contexts. The extension of this measure, which was
; |—|SubbandASR-N|—| inspired by the segmentation algorithm proposed in [22],
—o
—o

A. M-measure

The M-measure accumulates the divergences of probability

applied for predicting the estimation accuracy frame-by-frame. . . . !
bp P g y y timates spaced over several time-spans. It is defined as

This criterion worked better than the aforementioned criterf&

with even less than four seconds of speech. Another recently- 1 T
proposed technique evaluates the averaged dissimilarities in M(AtL) = T AL Z D(pt—at, Pt), (1)
the probability estimates spaced several time apart, which has t=At

been named the “M-measure” [6], [15]. This measure is simplghere At denotes the time interval between the phoneme
but has proven to be effective in predicting the estimatigsosterior probabilities at — At and ¢, p.a; and p;, and

accuracy [6]. The present work is an attempt to improve thjs(p, q) denotes the symmetric KL divergence between the
measure and was extensively studied in 2014 Frederick Jelifgisteriors,
Memorial Workshop in Prague [16], [17]. K " K "
_ (M) 190 P ) 190 L
B. Multistream-based unsupervised adaptation of ASR Dlp.a) = kZ_Op log iy + kz_oq log iy @
Figure 1 depicts a schematic diagram of multistream-base (k) .
adaptation paradigm, in which reliable band-limited streaﬁ{‘éﬂzeﬂgK ﬂe?](;fsbgﬁ“';guilg”gﬁ; i?f aan ngtsng/s\tlggoirs
are chosen on the basis of the performance monitor and Lo . T
. : ._developed using clean speech, this M-measure is higher for
then fused. In the multistream-based adaptation paradig an sppeech utg'][erances ?l e.. known data) and lower f%r noisy
reliable band-limited streams are chosen on the basis of &geech utterances (i.e u.nl.<,nown data). In addition, as the
performance monitor and then fused [7]. The first stage R of noisv s eech. décreases the M-.measure Iow,ers This
the parallel processing estimates the posterior probabilities Oeans that %epM-meas e co |é| be effective in determ:n'n
phonemes in the band-limited streams. This is followed u u Ve | ining

a fusion stage that integrates the classification results frqn ritglttairsttrizr:]%éF(eja;aears?rggrcr’mw(rc])ro; usrt]grr::;\,\\llxr/]it:\():hae ‘;‘]i's:]ee'zt
the band-limited streams on the basis of the performal ' y 9

n ;
monitor. Sharma [18] proposed a prototype multistream Aé%measure can be selected as the most reliable stream (or
system in which the full frequency was divided into seve%yStem) [15]. . .
bands to emulate the parallel processing that was hypothesize;!ihe M-measures in Eq._(l) are averaged over several time
in human speech recognition, and to selectively deal Wi{ﬂtervalsAt and the result is used as the confidence measure,
corrupted streams. All 127 non-empty combinations of these M = mean[M(At)], (3)
seven band-limited streams were formed and the second stage {at}
MLP classifier was trained for each of these 127 combinationghere {At} consists of 10, 15, 20;--, 80 frames (15
Our work is also based on multistream ASR, but the fulhtervals).
frequency is divided into five bands.

The key to the success of the multistream-based unsug@r-M-delta measure
vised adaptation of ASR systems lies in the performanceAn extension of the M-measure, which is denoted as the
monitor, which predicts the estimation accuracies of indiM-delta measure,” computes the probability in each time
vidual streams without requiring any knowledge about thepan of two frames being an instance of the same phoneme.
correct answers. Several unsupervised techniques using Theing testing, it estimates the M-measures for the same
aforementioned measures have been proposed and investigagesus different phonemes by solving a redundant set of linear
for selecting the least corrupted streams [11], [12], [13], [15¢quations.
[19], [20]. The original M-measure assumes that the distance between

Audio-visual ASR is an alternative multistream approach farobability estimates over several time-spans should be large
creating noise robust ASR systems [21]. This is not the foctm known data (mainly for clean speech). However, this is not
in the present study, but unsupervised adaptation based onalveays accurate. If two posteriors are from the same phoneme
performance monitoring is also applicable to this approachclass, the distance between them should be small, irrespective



of the time intervals. This means that the original M-measure TABLE |

ignores the effect of the posterior pairs that are separated by TYPES AND SNRS OF NOISE USED

large time intervals but belong to the same phoneme class. It [Titem noise type SNR [dB]

accumulates a symmetric KL divergence between the posteri- | clean

ors without considering this kind of phoneme dependency. zgﬁg E:E‘ggy »
Therefore, we introduce the idea of within-class and across- fac10 factory 10

class M-measuresM™¢ and M?¢, to represent the accumu- res10 restaurant 10

lated KL-divergence computed from a data pair from the same 3‘:5'5 gtxrgft't'o” hall g

phoneme class and that from a data pair from different classes, | cars car 5

respectively. The new M-delta measure is defined using these | exhQb2 | exhibition hall (band 2 corrupted 0

within- and across-class M-measures as exhQ b4 | exhibition hall (band 4 corrupted 0

Mdelta = M?¢ — MWe. 4)

) A. Multistream ASR system based on band-limited streams
We assume that the M-measure can be decomposed into

) , The multistream-based adaptation paradigm used was in-
M(AL) = pe(At) - MY+ p*(AL) - M™ +ear, (O)  troduced in [20]. The full frequency of the speech signal is
where M(At) denotes the original M-measure defined usingivided into five band-limited streams, each of which covers
Eq. (1), which is determined for each utterang®¢(At) and about three barks along the auditory frequency. Then, the
p*(At) denote the probability of a pair of frames separatepfocessing streams are formed for all the non-empty combina-
by At being instances from the same and different phonemé&ens of the five band-limited streams, yielding 31 processing
respectively; and\™¢ and M?¢, the within- and across-classstreams. The most reliable processing stream was selected
M-measures being estimated for each utterapt&(At) and using performance monitors and the posterior probabilities
p*(At) are determined from the training data transcriptiongrom the DNN for that stream were used for determining
The error termea; is included because Eq. (5) is an approxthe final recognition results. This adaptation paradigm yields
imate representation of the M-measure. Althougtf(At¢) advantages in terms of the band-limited noise corruption by
and p*¢(At), which are computed from the training dataysing a stream that does not contain the corrupted band.
are reliably estimated, these probabilities actually differ from The temporal modulation information in each band-limited
those computed from the test utterances, because the varigtgam was extracted from 250ms temporal envelopes using
of phonemes in a test utterance is limited. The redefined Mtequency domain linear prediction (FDLP) analysis [23]. A
measure described using Eq. (5) can be written redundarli{N-based probability estimator was trained for each band-
with severalAt values to minimize the overall error of thelimited stream with inputs as the FDLP features and triphone
within- and across-class M-measures. Assume thad, x, states used as the targets. The DNNs have four hidden layers of
ande are given as 1024 units, an input layer of 576 nodes, and 1951 output units.

_ T N These band-limited DNNs were used to yield 39-dimensional
y=[ M@At) - M(Aty) ] €R ©) phoneme posterior probabilities. The DNN-based probability
pYe(At)  p*(At) o estimators were developed for the 31 processing streams in
A= e e € R (7)  the latter stage. The features were determined by stacking the
pV(Aty) p*(Atn) phoneme posterior probabilities from the band-limited DNNs.
— wce ac T 2
x= [ M M } Te R ®) B. Confidence measures for performance monitor
N
e=[e - eay] €R ©) Experimental comparisons were conducted for three mea-
Then, Eq. (5) can be written as sures:
y = Ax+e. (10) . En_tropy: accg_mulated negative entropy of phoneme pos-
_ o terior probabilities
In this case, the within- and across-class M-measures can bg - original M-measure
estimated as a least square solution: . Mdelta: M-delta measure with\{™¢ and AMa¢
x=(ATA)'ATy. (11) These measures were computed based on a single sentence to

The experiments below used the valyést;, Ats,--- , Aty) predict the accuracy for that sentence.

=(1, 2, 3,4,5, 10, 15, 20,--, 75, 80) andN = 20, which Speech materials

were determined by conducting preliminary experiments.
y gp yexp All the models described in IV-A and the probabilities

IV. MULTISTREAM-BASED UNSUPERVISED ADAPTATION  ,we gnd pa¢ in Eq. (5) were trained on 3696 clean speech
OF ASR SYSTEM utterances from the TIMIT training set, and the evaluation
The techniques for predicting the estimation accuracy wenas conducted using 400 speech utterances from the TIMIT
evaluated as a performance monitor in the multistream-basislelopment set under several types of noise. The types and
unsupervised adaptation of DNN ASR systems [7]. SNRs of the noise are listed in Table I. There were 61



Entropy M m Mdelta oracle mw/oPM = w/PM (Entropy) = w/PM (M) ®mw/PM (Mdelta) = random
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Fig. 2. Correlations with phoneme accuracy in multistream-based adaptatfég. 3. Phoneme error rates determined using multistream-based unsupervised
for several types of noise. “ave” bars represent correlations averaged overadaptation for several types of noise. “ave” bars represent error rates averaged
conditions. over ten conditions.

phonemes in the TIMIT transcriptions that were compactdtbm the 31 recognizers, using the accuracy prediction. The
into 48 phonemes for training and 39 phonemes for evaluatigthoneme error rate was calculated from the recognizer outputs
as proposed in [24]. Note that in principle, the multistreanof the selected stream. The comparisons were as follows:
based adaptation paradigm enables an ASR system to be morg Oracle: selecting the stream with the best error rate by
robust against stream-specific noise, such as the_&zhand hand
exhQ b4 noises. e W/o PM: including all the individual band-limited
streams [25]
« random: selecting a stream at random
The evaluation criteria were: « W/ PM: selecting a stream with the performance monitor
« How well the scores from the performance monitorhe negative entropy, original M-measure, and M-delta mea-
correlated with the actual recognition accuracies sure were used for the systems PM.
« The phoneme error rate of an ASR system with Figure 3 shows the phoneme error rates for several types of
multistream-based unsupervised adaptation. noise. This figure proves that the multistream-based unsuper-
The aim of multistream-based unsupervised adaptation vised adaptation with the performance monitar PM) can
selecting the most reliable processing stream from the Bdduce the amount of phoneme errors from a system without
streams for each sentence. Ideally, the confidence measthesperformance monitowfo PM) and that based on the ran-
determined from the 31 processing streams should highdgm selection of a processing streammndom). In particular,
correlate with the corresponding phoneme accuracies. Tthe M-delta measure yielded a small but consistent advantage
correlations with the actual phoneme accuracy were therefamethe broad-band noise corruptions and more significant gains
individually calculated for each utterance across the 31 pronder the narrow-band noise conditions.
cessing streams, and then, averaged over the 400 utteranc&} Use of broad phoneme class probability estimator:
in the TIMIT development set. The phoneme error ratékhe techniques for predicting the estimation accuracy were
were determined from the processing stream estimated by thedified using the estimates of the probabilities of broad
performance monitor for each utterance, and averaged over finneme classes instead of the estimates of standard phoneme
400 utterances. probabilities. Using the broad phoneme classes can dete-
1) Evaluation by correlations with phoneme accuracy: riorate the accuracy of the M-measures but improve their
Figure 2 shows the correlation between the confidence measwl&bility by increasing the coverage of the classes. The
and the actual phoneme accuracy for several types of noiseven broad phoneme classes used were defined in [26], i.e.,
This figure shows that the M-delta measure yielded a signglosives, fricatives, nasals, semi-vowels, vowels, diphthongs,
icant improvement over the existing measures, such as #re silence. The posterior probabilitips for computing the
negative entropy and original M-measure, under the narromegative entropy and M-measure are determined by merging
band noise conditions, i.e., extif? and exh0Ob4, while it the phoneme posteriors corresponding to a broad phoneme
yielded similar results to those for the original M-measure arudass. Note that such broad phoneme classes are used only for
did not yield an advantage over the entropy in the broad-baodmputing the confidence measures (i.e., stream selection) and
noise corruptions. the posterior probabilities for the triphone states are calculated
2) Evaluation by selecting stream in multistream ASR:during the recognition of the selected stream.
The stream that yielded the highest confidence was selecte&igure 4 shows the correlation with the phoneme accuracy

D. Experimental results



Entropy ®Entropy-bc =M mM-bc = Mdelta mMdelta-bc car, destroyerops, exhall, f16, factoryl, and factory2 noises
from NOISEX database.

The original clean training set and nine noisy training sets
are combined to create a multi-condition training set, the
amount of which is ten times as much as other sets. The eleven
types (one clean, nine noisy, and one multi-condition) of
training sets are used to train eleven different DNNs, where ten
of them are trained on a specific acoustic condition, and one
DNN is trained on multi-condition data. The DNNs used have
a depth of six hidden layers, and each hidden layer consist of
1024 sigmoidal units. We used 40 dimensional Mel filter-bank
energy features. The DNNs are pre-trained using RBM [27]
and fine-tuned using the cross-entropy cost function. The
dean subls babls facld rest0  exhS  st5  cars  exh0_b2 exho_bd targets used for fine-tuning are context dependent triphone

states, generated using a GMM/HMM system.

Fig. 4. Correlation with phoneme accuracy in multistream-based adaptationg; +.: [
for several types of noise when using broad phoneme class (Entropy-bc, M-SlmIlar to the training set, we corrupted the development

bc, and Mdelta-bc) and standard phoneme class probabilities (Entropy, M, &&t With the nine types of noise at SNRs of 0, 5, 10, 15 and
Mdelta). 20 dB. The whole development set (clean and noisy versions)
is referred to as the test set from here on.
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for several types of noise when broad phoneme classes BreExperimental result

used. Using the broad phoneme class probability estimatofrape || shows the results of the test set in various streams.

yielded significant |mpr0ve_ment, |rr_e_spect|ve of_the Measurgsy the purpose of showing the upper limit of performance, the

under the narrow-band noise conditions, but did not help fgfacie selection technique is defined as selecting the stream

the broad-band noise corruption. that has the most similar acoustic condition of given test data.
The M-delta measure and use of broad phoneme clagsthe present study, we used two types of oracle stream

probabilities were extensively studied in 2014 Frederick Jgajection techniques as follows:

linek Memorial Workshop in Prague. During this workshop, o Utterance oracle We select a stream with the lowest

the proposed techniques were compared to the traditional error rate for each utterance by hand

confidence measures, such as the acoustic and language mOd.eIMatched condition: We select a streém trained on the

likelihood along with lattice and posterior probabilities in con- . o 1 Jise for a tést utterance

fusion sets accumulated for a single sentence. This comparisgn '

demonstrated that the M-delta measure yielded the best resmSJ %;rig Einger I:Ahsflk?é;oggr?;?t?or?; ;?: ;&r;dlgﬂgggvﬂaﬁr?ﬁéze
under the narrow-band noise conditions [17]. T y

of individual streams (i.e., clean, car, babble, and so on). In
addition, the utterance-level oracle streams performs better
than the condition-level oracle streams.

Uncertainty measures for stream selection are as follows:

« Entropy: Stream selection based on entropy minimiza-

V. MULTISTREAM ASR BASED ON SELECTION OF NOISE
SPECIFIC STREAMS

In the experiments described in Section IV, the DNNs
for all possible combinations of band-limited streams were

trained with only the clean speech_, and the deve_loped mu_lti-. M: Stream selection based on M value maximization
stream framework was robust against the band-limited Noise, Mdelta: Stream selection based on M-delta maximization

corruption. In this section, another type of muInstream—based.I_able Il shows that the entropy of posterior probability,

iusn?a[i)r?;\gsiﬂ a;iasptgg%r; Isng::guizidd.itligneag'r;]isstr?:gittsh?nDO '}Iained at the output of DNN is erroneous. The M measure
. P : erforms better than the entropy, which suggests measures that
multistream framework where each stream performs well

n . )
o . . . 00k at temporal dynamics of posteriors are better than those
a specific noise condition. For a given test utterance, select!

ng, - . .
posterior estimates from the stream having the most simi o%kmg at a single frame. The M-delta measure yields the

ar . " o
. . Improvement over the M measure and multi-condition training.
acoustic property, results in the lowest error rate.

In addition, integration of two best streams selected by the M-
delta measure (Mdelta-top2), in which the geometric mean of
two DNN posteriors is used for decoding, matches with the
We used 3696 utterances from the TIMIT training S€longition-level oracle stream. This results show that the M-

and 400 utterances from the TIMIT development set for thsita measure successfully selects condition specific streams.
purpose of testing. Ten types of original training set are created

by corrupting the clean training speech with nine types of VI. CONCLUSION
additive noise, at various signal-to-noise ratios (SNRs) rangingThe M-measure was extended and successfully applied to
from O dB to 20 dB. We used babble, buccaneerl, buccanedh® multistream-based unsupervised adaptation in ASR. The

A. Experimental setup



TABLE Il

PHONEME ERROR RATEY %) FROM STREAM-SELECTION SYSTEM USING UNCERTAINTY MEASURES AND INDIVIDUAL SYSTEMS

[ Train \Test [ clean] bab [ bucl [ buc2 [ car | des [ exh | f16 [ facl [ fac2 ][ Ave |
clean 20.7 [ 59.2 657 649 342 59575747629 620[ 533 54.0
babble 29.2 | 356 | 47.0 | 499 | 32.0| 436 | 37.2 | 415 | 428 | 324 | 39.1
buccl 319 | 542 | 356 | 43.6 | 40.0 | 52.6 | 53.0 | 40.8 | 49.1 | 40.6 || 44.1
bucc2 35.8 | 58.7 | 43.8 | 352 | 444 | 51.9 | 56.0 | 448 | 51.3 | 46.8 || 46.9
car 23.7 | 58.0 | 64.8 | 64.2 | 22.7 | 55.9 | 54.2 | 62.7 | 60.5| 48.6 || 51.5
destroyerops 284 | 479 | 441 | 433 | 31.7 | 33.7 | 455 | 42.1 | 44.0 | 36.4 || 39.7
exhall 295 | 40.3 | 46.1 | 484 | 31.7 | 421 | 33.7 | 420 | 43.0 | 325 38.9
f16 29.8 | 49.2 | 408 | 447 | 37.0 | 48.7 | 48.1 | 33.2 | 46.6 | 36.4 || 415
factoryl 298 | 46.1 | 39.1 | 40.8 | 339 | 436 | 44.0| 37.7| 365 | 329 || 38.4
factory2 27.0 | 44.7 | 43.7 | 480 | 29.1 | 453 | 428 | 410 | 433 | 29.3 || 394

[ Multi-condition | 22.8 | 36.8 | 38.7 | 39.6 | 25.0 | 34.8 | 34.3 ] 36.2 ] 36.3 | 280 || 33.3]

atched condition
Utterance oracle

176 | 31.8| 30.9 | 315 | 200

300 | 297 | 29.1 | 317 | 24.4 | 277

Entropy 2257 380] 398 4322497 365] 352366 37.7[ 29.2 ]| 34.4
M 228 | 39.7| 344 | 36.2 | 25.0 | 354 | 36.5| 325 | 39.5| 29.5 || 33.2
Mdelta 228 | 385 | 344 | 36.2 | 25.0| 33.3| 355 | 325 | 38.7 | 29.1 || 32.6
Mdelta-top2 20.1 | 376 | 342 | 353 | 21.6 | 33.6 | 34.7 | 325 | 385 | 28.3 || 31.6

within- and across-class M-measures were introduced to tgke
the phoneme class information that was ignored in the original

M-measure into consideration and determined by solving[ﬁ]
redundant set of equations. This extension (M-delta measure)
yielded significant gains over the original M-measure, espe-

cially when there was narrow-band noise, in selection of ban[(]j?]
limited streams trained on clean speech. The improvement was
made also in selection of streams formed on specific noidél
conditions. Both of these cases suggest that taking into accoynt
what is known about the structure of the phonemes in speech

can lead to the creation of better adaptive speech technologi?s.
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