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ABSTRACT

In many applications of machine listening it is useful to know
how well an automatic speech recognition system will do be-
fore the actual recognition is performed. In this study we in-
vestigate different performance measures with the aim of pre-
dicting word error rates (WERs) in spatial acoustic scenes in
which the type of noise, the signal-to-noise ratio, parameters
for spatial filtering, and the amount of reverberation are var-
ied. All measures under consideration are based on phoneme
posteriorgrams obtained from a deep neural net. While frame-
wise entropy exhibits only medium predictive power for fac-
tors other than additive noise, we found the medium temporal
distance between posterior vectors (M-Measure) as well as
matched phoneme filters (MaP) to exhibit excellent correla-
tions with WER across all conditions. Since our results were
obtained with simulated behind-the-ear hearing aid signals,
we discuss possible applications for speech-aware hearing de-
vices.

Index Terms— automatic speech recognition, perfor-
mance measures, spatial filtering, hearing aids

1. INTRODUCTION

Human listeners usually know how well they are doing in
terms of speech recognition in a given acoustic scene that in-
volves spoken language. This kind of knowledge would pro-
vide a useful measure in automatic speech recognition (ASR)
as well, i.e., given an utterance in noisy or reverberant con-
ditions, it would be advantageous to have an estimate for the
error rate. The module which performs the estimation is typ-
ically referred to as performance monitoring [14]. One possi-
ble application lies in multistream ASR, in which each stream
provides a different view on the signal. When effectively
selected or combined, this approach resulted in robust ASR
[1,20].

In this paper, we explore measures based on phoneme pos-
teriorgrams obtained from neural nets for performance mon-
itoring. Average frame-wise entropy of posteriors has been
proposed earlier for this task, based on the observation that
noise often results in multiple phone activations per frame,
thereby increasing its entropy [16, 13]. It has also been ap-
plied for estimation of speech quality in speech-aware hear-
ing aids using posteriorgrams [22]. Second, the mean tem-
poral distance (or M-Measure) has been proposed in [7] for
performance monitoring for a phoneme recognition task and
was successfully applied later in a multistream ASR setup
[14]. An approach that takes into account different average
durations of phoneme classes is matched filtering of poste-
riorgrams (which we refer to as MaP). In this approach, fil-
ters are learned from clean posteriors or labels and convolved
with posterior activations with the aim of obtaining high val-
ues for phonetic events. Our intuition is that low-noise speech
should produce more of these events, which could be useful
information for performance monitoring. This is supported
by results obtained in [11], in which matched filters improved
a keyword spotting system. We explore a modified version
for performance monitoring in ASR and compare the results
to entropy and M-Measure.

Optimally, a performance measure should predict the er-
ror rate of a system not just for one specific setting, but gener-
alize over different situations that occur in typical applications
in speech processing. We therefore test the three measures
in different acoustic scenes: Spatial scenes are simulated in
which a speaker is positioned on the left side of a virtual lis-
tener, where signals are obtained using behind-the-ear hearing
aids (Fig. 1). The hearing aid signals provide multiple chan-
nels, which allows to perform beamforming for enhancing
different angles. When the beamformer aims at the speaker,
word error rate (WER) is expected to be lowest, and a good
performance measure should also differentiate the correct an-
gle from other directions. Further, we investigate the effect



of localized and diffuse noise types in anechoic and reverber-
ant conditions. Although the main focus of the study is on
ASR, we briefly discuss the feasibility of our methods to be
used in speech-aware hearing aids given their hardware limi-
tations. Finally, it is analyzed which phoneme representation
(i.e., context-dependent triphones or monophones) should be
preferred for applying performance measures.
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Fig. 1. Illustration of the spatial scenes investigated in this
study: We simulate signals captured by behind-the-ear hear-
ing aids with a lateral speaker. Diffuse or spatial noise (at
—40°) is added to create two different acoustic scenarios.

2. PERFORMANCE MEASURES

In the following, the performance measures that are applied
to predict the word error rate are described. Both measures
are later compared to average frame-wise entropy of phoneme
posteriorgrams, which is used as a baseline.

2.1. Mean temporal distance: M-Measure

The mean temporal distance or M-Measure was proposed in
[7] for performance monitoring in ASR and was shown to
be a good predictor of error rates in a phoneme classification
task for two different noise types. It was also shown to out-
perform entropy in multistream ASR [14]. The measure takes
into account the average difference of two vectors of phoneme
posteriors p;_a¢ and p; with a temporal distance At, and is
given by

T

1
M(Af) = mtgtD<Pt—Atapt)7 (1)

where T is the duration of the analyzed posteriorgram. As
in [7], the Kullback-Leibler divergence was chosen as dis-
tance measure D between phoneme posterior vectors ps— ¢
and p;. We consider a range of At from 10 to 50 ms (in steps
of 10 ms) and 100 to 800 ms (in steps of 50 ms), which results
in 20 data points for each utterance as shown in the example in
Fig. 2. For small values of At, a small average KL-divergence
is obtained which reflects that neighbouring phoneme frames
will often be similar. When moving to At of 200 ms and

higher, M-Measure values typically saturate reflecting the ef-
fect of phoneme duration and coarticulation on the shape of
the curve. High noise levels often result in similar class acti-
vations over time (cf. third panel in Fig.4), hence the maxi-
mum distance is decreased for noisy conditions. Both effects
can be observed in the example in Fig.2. Since we assume
that the average value of the saturated curve is informative for
ASR WER, we average data points of the M-Measure curve
from 5 to 80 frames to obtain a scalar performance measure.
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Fig. 2. Average temporal distance (or M-Measure) for one
utterance from TIMIT for stationary speech-shaped noise at
various SNRs.

2.2. Matched Phoneme (MaP) filters

A third measure is obtained from matched phoneme filters
which are convolved with the temporal trajectories of pos-
teriorgrams. The idea is that filters matched to the average
activation pattern of phonemes should produce a high peak
for robust phoneme representations. For degraded posterior-
grams, these peaks should be less pronounced; this feature
could be used to assess the quality of the posteriorgram repre-
sentation. With this approach, we extract the number of peaks
per second (PPS) from the processed posteriorgram.

The procedure is as follows: First, phoneme-specific fil-
ters are obtained from clean data or labels. In this study, filters
were estimated from TIMIT data by averaging labels for each
phoneme class. Compared to the other performance measures
considered here, this has the advantage that prior knowledge
about phoneme duration (e.g., on average ’'OW’ is longer than
"P’) is explicitly taken into account in this measure. The esti-
mated filters are shown in Fig. 3. Second, posteriorgrams are
obtained from computing the softmax activations from the last
layer of the DNN. For the analysis of monophone posterior-
grams, the activations were grouped accordingly. To obtain
a sparse representation from the posteriorgram, a threshold is
applied to its values, as has been suggested in [9]. Next, each
row of the resulting representation is convolved with the cor-
responding matched filter. In related study on keyword spot-
ting [11], matched filtering was performed after a threshold
was applied. This strategy was also tested since it preserves
the shape of activations that the filters are supposed to match.



Phoneme label

-0.2 0 0.2

Time /s
Fig. 3. Phoneme-specific filter activations derived from
TIMIT labels.

When the threshold is applied first, parts of the activations
that we try to match are removed. On the other hand, early
thresholding also removes small (and potentially unreliable)
estimates of posteriors, which should be helpful to focus on
reliable activations, i.e., there is a trade-off between these two
effects. In pilot experiments, thresholding (I" = 0.5) fol-
lowed by filtering produced good correlations of SNR and the
performance measure, which hence motivated its use to pre-
dict WER. Localized activation patterns are obtained through
the filter process; in each localized trajectory, the position
of the local maximum is determined. Finally, the number
of phoneme peaks per second is obtained from this repre-
sentation. An example for unfiltered posteriorgrams (clean
and noisy) and the processed output with localized maxima
is shown in Figure 4. In this example, the number of peaks
is heavily reduced by adding speech-shaped, stationary noise.
In the next section it will be investigated if this measure is also
useful for different noise types, varying parameters of spatial
filtering and in different environments.

3. SIGNALS, SCENES, AND RECOGNIZER

3.1. Generation of spatial scenes

To investigate the results of spatial filtering and additive noise
on performance measures and WER, the standard Aurora 4
clean eval92 test set was used as a basis. Spatially localized
and diffuse sound sources are simulated using a database of
head-related impulse responses (HRIR), which features im-
pulse responses recorded with three microphones from each
of two behind-the-ear (BTE) hearing aids attached to left and
the right ear. The HRIRs used in this study are a subset of the
database described in [10]: Anechoic free-field HRIRs and re-
verberated HRIRs from the frontal horizontal half-plane were
measured at a distance of 3m and 1 m between microphones
and loudspeaker, respectively. All HRIRs (anechoic and re-

verberated) from the database were measured with 5° resolu-
tion for the azimuth angles, which was limited in this study
to 10° to obtain a feasible number of ASR test sets. Rever-
berated HRIRs were measured in a typical office environment
with a reverberation time of ~300 ms.

Spatial signal enhancement is conducted in the frequency
domain by multiplying the multi-channel STFT x(w, ) of the
input signal from the six BTE input channels with a spatial
filter vector w(«, w), « being the steering direction, yielding
the single-channel output y (o, w, t):

ylayw,t) = WH(a,w) x(w,t). 2)

We apply MVDR beamforming (’minimum variance dis-
tortionless response’, [3, 2]) and obtain w(«,w) from the
steering vector d(a, w); the noise covariance matrix R(w) is
calculated according to

R
d"(a,w) R~} (w)d(o,w)’

w(a,w

3)

In the current approach solely head-related characteris-
tics of sound propagation are included in the signal enhance-
ment setup and no further information about room acoustics
is exploited. Hence d(«,w) is computed from the anechoic
HRIRs according to a given « and R(w) from the whole set of
anechoic HRIRs, resembling a spatially diffuse, white noise
field as captured by the BTE devices.

Figure 1 shows a sketch of the first acoustic scene under
consideration. Spoken utterances from a fixed azimuth an-
gle of -30° were mixed with random parts of a spatially dif-
fuse stationary speech-shaped noise at signal-to-noise ratios
(SNR) from -10 to 10dB in 5dB steps. In a second sce-
nario, the diffuse noise was replaced with a localized vac-
uum cleaner noise positioned at +40° azimuth using the same
range of SNRs; the noise signal was taken from the BBC
Sound Effects Library.

3.2. ASR setup

The ASR system was trained using the standard kaldi DNN
recipe for anechoic multi-condition data (Aurora 4)[19].
Clean-condition training was also considered, but produced
generally very high error rates for the chosen SNR range
from -10 to 10 dB in pilot experiments and was hence not
included in the experiments presented here. The DNN used
six hidden layers, 2048 units per layer, and an additional
softmax output layer. It was pre-trained as a RBM using con-
trastive divergence (CD-1) and supervised fine-tuning with
the triphone targets via cross entropy. Every phone was mod-
eled with three Hidden-Markov-Model (HMM) states except
for the silence phone which was modeled with five states.
40-dimensional Mel-filterbank (FBANK) features were ex-
tracted from the 16 kHz audio data and fed to the DNN using
an additional temporal context of 5+5 frames, resulting in
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Fig. 4. Comparison of clean and noisy posteriorgram, as well as the processed posteriorgrams obtained for a segment of one
utterance. In the clean case, 22 peaks are obtained with a threshold of T' = 0.5, while at -10 dB SNR only 7 peaks occur.

440-dimensional input to the neural net. Phoneme posteri-
orgrams were derived from the activations of the softmax
output layer. Monophone posteriorgrams were obtained by
grouping all triphones belonging to the same phone and sub-
sequent summation of the corresponding activations. Test
signals were generated as outlined in the previous subsection.
In total, 330 (clean test sentences) x 2 (rooms) X 2 (noise
types) x 19 (directions) x 5 (SNRs) were produced (approx.
125k test utterances).

4. RESULTS

4.1. Comparison of performance measures

Fig. 5 compares three performance measures with word error
rate. Two noise scenarios, five SNRs and 19 directions the
beamformer was steered to are pooled in each subplot to an-
alyze how well the measures generalize over different condi-
tions. In case of entropy (left panels) there is no consistent
relation, neither for the anechoic case nor the office situa-
tion. The lower left panel shows data points with a similar
entropy (values between 1.5 and 2) that belong to the same
SNR (—10 dB, black diamonds) but are scattered across a
large WER range, which is caused by different beamform-
ing angles. This means that in this condition the degradation
caused by spatial filtering is not captured by entropy. In con-
trast to this, for the M-Measure and MaP, a clear relation with
WER emerges showing that effects of SNR, spatial filtering
and noise types introduced to the posteriorgram are reflected
by both measures. The data shows ceiling effects for the low-
est SNR (—10 dB). For higher SNRs (> 10dB, not consid-
ered here), we expect a flooring of WER, which would result
in a sigmoid shape of the data. We therefore fit a sigmoid
function to the data obtained with M-Measure and MaP and
report the root-mean-square difference of data points and the
fitted curve to evaluate the measures. The fit is also used to
linearize the data and calculate Pearson’s correlation coeffi-
cient. In an anechoic environment, a higher correlation with
WER is obtained with the M-Measure (r = 0.962) than with
MaP (r = 0.842). The opposite trend is observed in a re-
verberated office environment (M-Measure: = 0.669, MaP:
r = 0.874).

In comparison to standard Aurora 4 results, the WERs we
obtain are comparatively high with error rates often reaching
100% for high-noise conditions. This can be attributed to the
low SNRs chosen here that range from -10 to +10dB, while
the original Aurora 4 test set exhibits random SNRs between
10 and 20dB [18]. A second important factor is reverberation
introduced in the office condition. To decrease WERs, strate-
gies to cope with reverberated signals could be applied [23],
but are out of scope for this study.

The data presented in Fig. 5 was obtained with the full Au-
rora 4 test set (330 utterances, each approx. 5 seconds). This
could be useful for scenarios in which acoustic conditions
do not change rapidly, but ultimately a performance measure
would be much more useful when estimation on shorter time
scales is possible. We investigated this by looking at a smaller
number of utterances, and report the corresponding correla-
tions in Table 1. Correlations over 0.7 are obtained even if
just a single randomly selected utterance is used.

Fig. 6 shows an example for one utterance (speaker at 30°)
and how M-Measure and MaP are affected by different SNRs
and beamforming angles. Both measures peak at the location
of the speech source and show lower values for off-speaker
directions as well as higher SNRs.

#Ultts, Anechoic Office

M-Meas. MaP M-Meas. MaP
1 0.911 0.705 0.722 0.724
2 0.935 0.773 0.644 0.777
4 0.955 0.802 0.538 0.717
8 0.956 0.847 0.730 0.837
16 0.959 0.858 0.687 0.885
32 0.962 0.853 0.660 0.793
64 0.964 0.844 0.637 0.875

Table 1. Correlation values for M-Measure and MaP for dif-
ferent number of Aurora 4 utterances from which WER and

performance measure were calculated.



100 5 o D 00 CAGODD ) O 100 A0 100
P o o
9 ¢ @
A%O ' A NS
[S) gor ) 3A A 80 N 80
o a0y A &%
£ 60 7 0 ¢ r 60 %OA% r 60 2% o
O uw O M I L A “ w % Ao
D = 4 % o = % TR = 40 £
C o I o A A o A
< ¢ é ¢ og
20 ® o 20 o @ 20 o0
0 0 RMS diff.: 79.9581, r=0.962 o RMS diff.: 77.1833, r=0.842
1.5 2 25 2 4 6 8 10 12 14 0 5 10 15
Entropy M-Measure MaP
100 %%% Eoo 100 %& A 100
o fﬂé jt:a a® & ",
90 o 73 90 RN £l
QOOQAA LOAO%Q
(O] 80 o %a 80 Amo \ 80
'ucE) G 70 o0 o G 70 ) G 70
A 0, A
o = 9 AA = % \ =
o o
60 <§§><> 60 % 60
50 [ 50 A0 50
RMS diff.: 81.7692, r=0.669 RMS diff.: 81.5122, r=0.874
40 o 40 © 40 O
15 2 25 3 2 4 6 8 10 12 4 6 8 10 12 14
Entropy M-Measure MaP

Fig. 5. Relation of average WER and performance measures for an anechoic environment (top row) and an office (bottom).
Color encodes the test SNR, ranging from -10dB (blue circles) to +10dB (black diamonds). The data shown here covers two
different noise types and 19 beamforming angles per condition. For M-Measure and MaP, a sigmoid function was fitted to the
data; in the subplots, the RMS difference between fit and actual data is shown, as well as the correlation with WER.

4.2. Triphone vs monophone activations

An important question when investigating performance moni-
toring is to which specific representation the measures should
be applied. Previous work using the M-Measure has been car-
ried out on monophone posteriorgrams for phoneme recogni-
tion [7] or context-dependent triphone activations, which have
been become standard in DNN-based ASR systems [14]. In
this study, the relation of this factor to predictive power of
the measure is analyzed by application of the measures to
both monophone as well as triphone activations. Note that
the matched filter approach only used monophone activations,
since the filters were obtained from monophone TIMIT la-
bel data. Table2 compares the correlation values obtained
for both measures after linearizing the data through a sigmoid
fit, as described in the previous section. While for anechoic
data almost identical correlations are obtained, using triphone
representation increases the quality of the M-Measure, i.e.,
in this reverberant condition, it is beneficial not to merge the
triphone classes to monophones.

4.3. Technical feasibility for hearing devices

The main focus of this study is on performance monitoring for
ASR in multi-channel scenarios. However, the signals under
consideration were obtained from impulse responses recorded

Room Posteriorgram r

M-Measure Anechoic Tri 0.9620
M-Measure Anechoic Mono 0.9621
MaP Anechoic Mono 0.8420
M-Measure  Office Tri 0.8191
M-Measure  Office Mono 0.6694
MaP Office Mono 0.8736

Table 2. Correlation values for the M-Measure applied to
triphone and monophone activations as well as for the MaP
method, which was only test on monophones. All correlation
values were highly significant (p < 0.001).

in behind-the-ear hearing aids, which motivated an assess-
ment of the applicability of our findings in assistive hearing
technologies. We assume that for the parameters varied in this
work, the relation between speech intelligibility in normal-
hearing and hearing-impaired listeners on the one hand, and
ASR WER on the other is straight-forward: The best perfor-
mance can be expected for a lower SNR and a beamformer di-
rected to a spatial source. The measures analyzed could there-
fore be valuable in optimizing parameters of hearing devices,
e.g., by monitoring several beamforming directions with the



M-Measure

6
90 -60 -30 0 30 60 90
Beamforming azimuth

6
-90 -60 -30 O
Beamforming azimuth

30 60 90

Fig. 6. Relation of performance measures with SNR and
beamforming azimuth o for the office condition with diffuse
noise, using one utterance from Aurora 4 to obtain each data
point. As in Fig. 5, color encodes the test SNR, ranging from
-10dB (blue circles) to +10dB (black diamonds).

aim of selecting the optimal azimuth indicated by high values
for the corresponding performance measure. It is however
unclear if this is technically feasible, since it requires the gen-
eration of posteriorgrams on small-footprint hardware.

On the Kavuaka processor, an application-specific inte-
grated circuit (ASIC) developed at the Cluster of Excellence
Hearing4all for hearing aids and digital signal processing,
performing a feed forward pass on a deep learning architec-
ture as the one used in this study (i.e., six hidden layers with
2048 units per layer, and an additional softmax output layer)
will approximately take 300 ms per frame, taking profit on the
available subword and instruction parallelism mechanisms
implemented on the Kavuaka processor[12]. Comparable
performance can be yielded by ASICs that are used in cur-
rent hearing aids, such as the CoolFlux DSP [21]. The main
constraint in these ASICs is the dynamic range of the pa-
rameters, for instance the Kavuaka processor can efficiently
emulate floating-point arithmetic (i.e., 24-bit signficant and
8-bit exponent floating-point format) [6] which provides high
precision within a narrow range. Therefore, methods like
batch normalization on the DNN side and CMVN on the fea-
tures side are imperative for using DNN-based processing on
actual hearing aid hardware.

Although the current implementation of our DNN is not
capable of running in real time on the hardware mentioned
(with a real-time factor (RTF) of 300 ms/10 ms), it should be
possible to reach an RTF below 1.4 by reducing the num-
ber of hidden neurons to 512, which should not compromise
performance but potentially decreases the processing time by
an order of magnitude: As reported in [17], relatively small
nets can be used (e.g., with only 256 hidden neurons) while
still maintaining low phoneme classification errors on TIMIT.
Hence, we believe it is worth to further explore this applica-
tion in performance monitoring.

5. SUMMARY

Both M-Measure and MaP appear to be suitable for perfor-
mance monitoring and to generalize over different acoustic
scenarios. In terms of correlation with WER, we obtained bet-
ter results for M-Measure in anechoic situations, while MaP
should be preferred in the reverberant condition. This was
consistently observed for a full modified test set from Au-
rora 4 as well as for a single utterance. Since the calcula-
tion of measures is rather different, we believe there is room
for improvement by combining them to exploit their potential
complementarity.

We also investigated if performance measures should be
applied to posteriorgrams that represent context-dependent
triphones or rather monophones, where the latter can be
derived by grouping the according triphones. Very similar
correlations were obtained for M-Measure in the anechoic
case (r = 0.96), but in the office condition better results were
achieved with triphone activations. This comparison was re-
stricted to the M-Measure, since MaP used matched filters
which were derived from TIMIT monophone labels. In future
research, it should be tested if a similar benefit is obtained
for MaP when using triphone posteriorgrams. This could be
achieved by learning phoneme trajectories from clean DNN
output rather than from labels.

In this work, we used signals from behind-the-ear hear-
ing aids, which is an unusual setting for ASR but is useful
for assistive technologies, e.g., for providing transcripts for
the hearing impaired. It also motivated us to estimate if a
standard DNN forward pass could be done on current hearing
aid hardware. This was not the case, but rather simple and
straight-forward modifications to our setup would allow to do
the processing in real-time.

Our findings should be useful for multi-microphone ASR
for distant speech recognition in general: Since the distance
of microphones considered here is very small, the effects
of beamforming or channel selection are limited. Still, it
was shown that our performance measures capture the effect
of spatial filtering. Devices for home automation typically
exhibit several microphones with a larger distance (e.g., ar-
ranged in a circular array), in which beamforming has a
larger effect and hence should be reflected by these measures
as well.
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