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Abstract
This study investigates a multistream phone recognition
system, which consists of 21 parrallel sub-systems, each
covers two critical bands, and fused by a multi-layer per-
ceptron (MLP) system. Within each band, speech infor-
mation is encoded by the frequency-domain linear pre-
diction (FDLP) feature, which characterizes the tempo-
ral modulation of subband envelope. Two experiments
are conducted to determine the optimal parameters for
speech features, the maximum temporal modulationFm

and the context window lengthT , followed by an exper-
iment to evaluate the robustness of the fused system in
noise. Results show that the phone accuracies of sub-
systems reach the maximum point at about 500–600ms;
they keep increasing monotonically as the maximum fre-
quency of temporal modulation changes from 4 to 40 Hz,
where it saturates. Tests of the fused system in babble and
subway noise at 15 dB SNR indicate that the multi-stream
system is more robust to noise than the single-steam base-
line system.
Index Terms: multistream, temporal modulations, phone
recognition

1. Introduction

Human beings are much more robust to noise than the
machine systems in recognizing speech. A critical char-
acteristic of the human auditory system is that it takes a
parallel processing scheme for speech perception. The
cochlea consists of about 40 critical bands from 0.3 to
8 kHz. Each critical band is working as an indepen-
dent channel for speech reception. Corruption of any one
channel has little impact on the performance of overall
system since noise masking occurs only within a criti-
cal band. In the 1920s, Fletcher and his colleagues at
Bell Labs investigated the contribution of different fre-
quency band to human speech perception. It was discov-
ered that the average phone error rate of full-band stim-
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uli is about the same as the product of error rates from
20 articulation bands [1], consistent with the assumption
that the critical bands are indepedent for speech recog-
nitio. Fletcher then identified one articulation band to
be about two critical bands, i.e., 1 mm along the basi-
lar membrane (BM). Human speech perception can be
broadly categorized into three basic steps: First, speech
is decomposed into multiple critical bands at the cochlea,
which defines the signal-to-noise ratio in each channel;
then the speech features are extracted by hundreds of in-
ner hair cells (heavily overlapped auditory filters) within
each critical band; next the speech features are assem-
bled in the central auditory system and used for phoneme
classification.

Unlike human speech perception which takes a
scheme of parrellel processing, typical automatic speech
recognition (ASR) systems use fullband spectral template
to match speech segments. Degradation at one frequency
usually affects the entire template and makes the system
fragile in noise. To compensate for this degradation, typ-
ical ASR systems place a heavy emphasis on word and
language models as a method to increase the recognition
score, which makes the problem even more complex.

Inspired by the research on human speech percep-
tion [1], a multistream speech recognition system is pro-
posed, in which the full frequency is divided into multiple
bands to improve noise robustness [9]. The system yields
around 50% reduction in word error rate on isolated dig-
its in frequency-selective additive noise [9]. Recently,
Athineos et. al [10] developed an analysis technique for
speech signal, named frequency domain linear prediction
(FDLP), which is quite different from conventional short-
term spectral analysis. This technique estimates the am-
plitude modulation of subband signals, similar to human
auditory processing.

In this study, we develope a multistream phone recog-
nizer based on the framework of [9]. The full frequency is
divided into 21 bands, each covers about 2 critical bands.
Temporal envelopes are estimated for individual bands
and used for phoneme classification in each stream. The
21 streams are then combined using a fusion algorithm.



The rest of the paper is organized as follows. Sec. 2 de-
scribes the multi-stream architecture and the FDLP tech-
nique for feature extraction. The phoneme recognition
setup is explained in Sec. 3. Sec. 4 compares the perfor-
mance of the multi-stream system with a single-stream
front-end. In Sec. 5, we conclude the study with a discus-
sion of the proposed features.

2. Multistream phone recognizer

In this section, we describe the architecture of the multi-
stream phone recognizer and front-end processing to ex-
tract robust temporal modulation features.

2.1. System architecture

The proposed multistream system is parallel in nature. A
schematic diagram of the system architecture is shown
in Figure 1. It consists of 21 bands equally distributed
from 0 to 8 kHz on Bark scale. A seperate MLP-based
phoneme classifier is built for each band. The neural
networks are trained on the temporal modulation fea-
tures extracted from individual bands to estimate the
phoneme posterior probabilities. Since each stream only
provides marginal information, those outputs need to be
combined to generate a more reliable estimation. A
good fusion algorithm should be sophisticated enough
to take into consideration multiple factors like: robust-
ness of each stream, relavance of a stream to a particular
phoneme class etc. Several different fusion approches,
such as, the inverse-entropy approach, Dempstar-Shafer’s
method, and KarhunenLove transform- Multi Layer Per-
ceptron (KLT-MLP), have been proposed for the combi-
nation of phoneme posterior probabilities. In this work
we use the KLT-MLP based fusion approach. The 40-
dimension posterior probabilities are converted into fea-
tures by computing logarithm and then decorrelated using
KLT, which reduces the dimensionality of the features
to 25. Features corresponding to each critical band are
stacked. Accordingly the input feature vector to the fu-
sion system has a dimension of 21×25. A second-stage
MLP is trained to esitmate the final phoneme posterior
probabilities.

Figure 1: Schematic digram of a multistream phone
recognition system

2.2. Sub-stream phone recognizer

The sub-stream phoneme recognition system is based on
the Hidden Markov Model - Artificial Neural Network
(HMM-ANN) paradigm [2]. The MLP estimates the pos-
terior probability of phonemes given the acoustic evi-
denceP (qt = i|xt), whereqt denotes the phoneme index
at framet, xt denotes the feature vector taken with a win-
dow of certain frames. The relation between the poste-
rior probabilityP (qt = i|xt) and the likelihood is given
by the Bayes rule. The state transition matrix is fixed
with equal probabilities for self and next state transitions.
Viterbi algorithm is applied to decode the phoneme se-
quence.

2.3. Frequency domain linear prediction based mod-
ulation features

Linear prediction (LP) analysis of a signal attempts to
predict the current sample as a linear combination of
past samples. Through the extraction of linear depen-
dence, the original signal is described as a result of pass-
ing a temporally uncorrelated (white) excitation sequence
through a fixed all-pole digital filter. When LP analysis
is applied in time domain, the filter comprises a paramet-
ric approximation of its power spectrum. The duality of
time and frequency domain means LP can be applied to
discrete spectral representation of a signal. This process
is called frequency domain linear prediction (FDLP). In
a manner similar to parametric representation of power
spectrum by time domain linear prediction, FDLP pro-
vides a parametric representation of Hilbert envelope of
the signal. Fig. 2 illustrates the ability of FDLP to model
Hilbert envelope.
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Figure 2: Illustration of the all-pole modelling with
FDLP. (a) a portion of speech signal, (b) its Hilbert en-
velope and (c) all-pole model obtained using FDLP.

Long-segments (3 - 5 seconds) of speech are decom-
posed into critical bands, by windowing the discrete co-
sine transform (DCT) coefficients. Sub-band temporal



envelopes are approximated by an all-pole model using
FDLP. Stacking these temporal envelopes creates a two-
dimensional time-frequency representation of the input
signal. The sub-band envelopes are converted into mod-
ulation spectral components by computing DCT on seg-
ments of envelope with a duration ofT ms and a time
shift of 10 ms. In each segment, the modulation fre-
quency components greater thanFm are discarded. The
corresponding number of DCT coefficients used for fea-
tures can be calculated by⌊(T + 25) · Fm/500 + 0.5⌋,
where 25 ms is the duration of individual frames. It is
observed that the two parametersT andFm have signif-
icant effect on the performance of the substream phone
recognizers.

3. Experiments

Two experiments are conducted to determine the max-
imum modulation frequencyFm and optimal context
window lengthT for sub-stream systems; then the two
identified parameters are applied in the multistream sys-
tem in the third experiment for the evaluation of noise-
robustness. The details of the three experiments are ex-
plained in the following subsections.

3.1. Experiment I: context window length T

This experiment aims to identify the optimal context win-
dow lengthT for all sub-stream phone recognizers. For
each band the context window lengthT is varied from
100 to 800 ms with the maximum modulation frequency
Fm being fixed at 40 Hz.

3.2. Experiment II: maximum modulation frequency
Fm

This experiment aims to identify the maximum frequency
of temporal modulationFm that contributes to phoneme
identification. The context window lengthT is fixed at
600 ms, and the maximum modulation frequencyFm is
varied from 4 to 48 Hz with a step size of 4 Hz.

3.3. Experiment III: noise robustness of the multi-
stream system

This experiment aims to assess the noise-robustness of
the multi-stream system in noise. The multi-stream sys-
tem is trained in clean condition and tested in clean and
subway noise at 15 dB SNR. The performance is com-
pared with that of a single-stream system using PLP fea-
ture as the front-end.

All experiments are performed on TIMIT database
containing speech sampled at 16000 Hz. The train-
ing data consists of 3000 utterances from 375 speakers,
cross-validation data set consists of 696 utterances from
87 speakers and the test data set consists of 1344 utter-
ances from 168 speakers. The ‘sa’ dialect sentences are

removed from the experiments. The TIMIT database,
which is hand-labeled using 61 labels is mapped to the
standard set of 39 phonemes.

4. Results and Discussion

In this section, we first present the results of two experi-
ments on maximum modulation frequencyFm and opti-
mal context window lengthT ; then we compare the per-
formance of multistream system with single-stream base-
line systems under noisy conditions.
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Figure 3: Effect of maximum modulation frequencyFm

on phoneme recognition, with context window lengthT
being fixed at 600 ms, in clean condition

4.1. Maximum modulation frequency Fm

Figure 3 depicts the phone accuracy of the 7, 13, and
17th band as a function of maximum modulation fre-
quencyFm in clean condition. The performance of all
three subband phone recognition systems climb dramati-
cally asFm increases from 4 to 12 Hz; then the slope of
the curves drop immediately, suggesting that amplidute
modulation below 12 Hz is critical for speech recogni-
tion. FromFm=12 to 24 Hz the phone accuracies of the
7th, 13th, and17th bands increase by 3.2, 3.8, and 3.3%
absolute respectively, suggesting that amplitude modula-
tion within 12 to 24 Hz is significant for phoneme clas-
sification. After that the phone accuracies of subband
phone recognition systems keep increasing slowly asFm

changes from 24 to 44 Hz, where the subband phone
recognition systems saturate in performance. The 7, 13,
and17th band, selected from the low, middle, and high
frequency range respectively, all generate the same re-
sults.

4.2. Context window length T

Figure 4 depicts the phone accuracy of the 7, 13, and17th

band as a function of context window lengthT in clean



condition. When the context window is shorter than 200
ms, all subband phone recognition systems are signifi-
cantly affected with the phone accuracies of the 7, 13, and
17th band drop by 2.2, 1.4, and 0.94% absolute respec-
tively, suggesting that 200 ms, which is about the aver-
age length of syllables, is the critical context for phoneme
classification. Beyond the critical context, most subband
systems show steady yet slow increase, as the context
T changes from 200 to 800 ms. All subband systems
reach maximum when the duration of context is some-
where aroundT = 500 ms.
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Figure 4: Effect of context window lengthT on phoneme
recognition, with maximum modulation frequencyFm

being fixed at 40 Hz, in clean condition

4.3. Noise robustness of fused system

Figure 5 compares the phone accuracy of the fused mul-
tistream system with a single-stream system that use per-
ceptual linear prediction (PLP) [6] feature as the front-
end. The two systems are comparable in clean conditions.
When the speech is corrupted with babble and subway
noises at 15 dB SNR, the phone accuracy of the multi-
stream is significantly better than that of the single-stream
system.

In addition, the multi-stream system allows to choose
higher temporal context and modulation frequency com-
pared to single-stream system. This is because, multi-
stream system operates on features extracted from indi-
vidual sub-bands which is considerably smaller in dimen-
sion as compared to the feature for single-stream system.

5. Conclusions

In this study we developed a multistream phone recogni-
tion system that consists of 21 sub-systems, each cov-
ers two critical bands, and fused by a multi-layer per-
ceptron (MLP) system. Each of these 21 sub-systems is
trained on temporal modulation features extracted by us-
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Figure 5: Comparison of FDLP multistream system with
PLP single-stream system

ing FDLP to individual sub-bands. Two experiments are
conducted to determine the context window length (T )
and maximum modulation frequency (Fm) that optimize
the performance of indvidual sub-systems. Results show
that the phone accuracies of sub-systems reach the max-
imum at aroundT = 600ms andFm = 40Hz. These
choices are used to build a multi-stream system and tested
on babble and subway noises at 15 dB SNR. Compared
to the single-stream baseline system, the proposed multi-
stream system is more robust to noise.
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