
A framework for Practical Multistream ASR

Sri Harish Mallidi1, Hynek Hermansky1,2

1Center for Language and Speech Processing,
2Human Language Technology Center of Excellence,

The Johns Hopkins University, Baltimore, U.S.A.

Abstract
Robustness of automatic speech recognition (ASR) to acous-
tic mismatches can be improved by using multistream architec-
ture. Past multistream approaches involve training large number
of neural networks, one for each possible stream combination.
During testing phase, each utterance is forward passed through
all the neural networks to estimate best stream combination. In
this work, we propose a new framework to reduce the complex-
ity of multistream architecture. We show that multiple neural
networks, used in the past approaches, can be replaced by a sin-
gle neural network. This results in a significant decrease in the
number of parameters used in the system. The test time com-
plexity is also reduced by organizing the stream combinations in
a tree structure, where each node in the tree represent a stream
combination. Instead of traversing through all the nodes, we
traverse through paths which resulted in a increase in the per-
formance monitor score. Compared to state-of-the-art baseline
system, the proposed approach resulted in 13.5 % relative im-
provement word-error-rate (WER) in Aurora4 speech recogni-
tion task. We also obtained an average of 0.7 % absolute de-
crease in WER in 5 IARPRA-BABEL Year 4 languages.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
Performance of state-of-the-art ASR systems can degrade
rapidly when there is a mismatch between training data acous-
tic conditions and test data acoustic conditions. Multistream
speech recognition provides an intuitive way to improve robust-
ness of ASR systems to acoustic mis-matches. The fundamental
motivation behind multistream recognition is, noise or environ-
mental distortion effects only few parts of the signal space (e.g.
frequency bands or spectro–temporal frequency bands). The
portions which are less corrupted can be identified and deci-
sions from these streams can be emphasized.

In order to build a robust multistream system, we need
streams which are localized in signal space as much as possible
[1]. This results in a large number of streams. Full Combina-
tion MultiStream (FCMS) architecture, used in previous studies
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[2, 7, 10], is not a practical solution to deal with large num-
ber of streams. The reason is that, FCMS architecture involves
training 2N − 1 neural networks in presence of N -streams. For
example, 7 sub-band system used in [6, 4] requires 27−1 = 127
fusion networks.

In this paper, we propose a practical multistream architec-
ture. Our previous work [5] showed that multiple neural net-
works used in FCMS architecture can be replaced by a single
neural network. This resulted in a significant reduction in the
complexity during training phase system. We further simplify
the training procedure by using single-stage architecture instead
of 2-stage architecture used in [5]. We also propose a technique
to reduce the test time complexity of the system. The technique
is based on the idea that stream combinations can be organized
into a tree, where nodes of the tree represent stream combina-
tions. Advantage of this organization is, we can use tree traver-
sal algorithms to find the best stream combination efficiently.
We applied the technique on a 9-stream system. Using this tech-
nique, we are able to reduce average number of forward passes
from 511 to 30.

Rest of the paper is organized as follows: Sec. 2 describes
proposed improvements to multistream architecture. Useful-
ness of various modules in multistream ASR is illustrated in
Sec. 3. Performance in noise robust ASR experiments are pre-
sented in Sec. 4. Sec. 5 concludes the paper with a summary of
the proposed techniques.

2. Proposed Multistream architecture
2.1. Training stage:

Figure 1 illustrates proposed multistream architecture. For sim-
plicity, we illustrate the architecture for a 2-stream case. The
principle can be extended to any number of streams. Input fea-
ture vector to the proposed fusion network is formed by con-
catenating features from individual streams. Just before con-
catenation of the features, we employ a binary switch (Zi),
which can multiply entire feature vector of stream-i with 0 or
1. During training, each switch (Zi) acts as an independent
Bernoulli random variable. In this work, we use p = 0.5 for
all the switches. This makes all switch combinations, [1, 1],
[1, 0] and [0, 1], equally likely during training. If null-switch
combination, [0, 0], is observed, we resample a non-null switch
combination ([1, 1], [1, 0] and [0, 1]). During training, value
of a switch changes at every frame. So the network can see one
of the following input patterns, [stream1, 0] or [0, stream2] or
[stream1, stream2] at every frame.

During test, when some of the streams are corrupted, ro-
bustness can still be retained by dropping out (i.e. multiplying
with zero) feature vectors from corrupted streams. The fusion
neural network can break down if it sees a test vector with some
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Figure 1: Training and testing stages of proposed Multistream
architecture. Multiple networks in FCMS architecture are re-
placed by a single network. Complexity of testing stage is also
simplified by hierarchical organization stream combinations.

of its elements as zeros. We avoid this by randomly dropping
out features of a stream during training. This forces the network
to learn to classify even when part of test vector is zero.

The technique was first proposed in our previous paper [5].
In [5], we used a 2-stage architecture. The first stage involves
forming band-limited streams, and training a separate neural
network for each stream. The posteriors from the first stage neu-
ral network are transformed using TANDEM procedure. TAN-
DEM features from the first stage are concatenated and used as
features for second stage neural networks. In this work, we use
single stage architecture instead of 2-stage architecture. Acous-
tic features from each stream are concatenated and used as input
to multistream neural network.

2.2. Testing stage:

For a given test utterance, we need to identify stream combi-
nation which results in lowest error-rate. In previous works
[2, 4, 10], posteriors of all the stream combinations are evalu-
ated using performance monitoring technique. In this approach,
number of forward passes required to identify best stream com-
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Figure 2: Illustration of proposed technique to find best stream
combination.

bination increases exponentially with number of streams. For
example, a 7-stream system requires 127 forward passes [4].
The large number of forward passes at test time can deter prac-
tical applicability of the system.

In this section, we propose a technique to reduce the test
time complexity of multistream system. The technique is based
on the idea that stream combinations can be organized into a
tree, where each node represents a stream combination. Fig-
ure 2 shows an example organization of stream combinations in
a tree. Using this organization, we can use tree traversal algo-
rithms to efficiently search for best stream combination.

Pseudo-code of the search algorithm is described in algo-
rithm 1. Using the algorithm, we reduce the worst-case com-
plexity from O(2N ) to O(N2) number of evaluations, where
N . In practice, number of evaluations required are much fewer
than O(N2). For the 9-stream system used in table 1, number
of evaluations required to find best stream combination are ≈
30.

1 parent node = root node ;
2 parent score = root score ;
3 FindBestChildNode(parent node, parent score)
4 compute scores of all child nodes ;
5 if parent score ≥ max(child scores) then
6 return (parent node, parent score) ;
7 else
8 best child node = (child node with score ==

max(child scores)) ;
9 FindBestChildNode(best child node,

best child node score) ;
10 end
11 end
Algorithm 1: Search algorithm used to find best stream
combination. In our implementation root node refers to
combination where all the streams are present.

3. Controlled experiments
3.1. Subband streams

Log-Mel filterbank features, spanning frequency range of 0-
8000 Hz, are computed from the speech signal. In each Mel
band, TRAP features are computed by taking DCT transform
over a temporal context of 11 frames. The resulting TRAP fea-
tures are grouped into Bark critical bands. Each stream is set to
cover 2 Bark bands. This results in 9 subband streams.

3.2. Experimental setup

The first set of experiments are reported using models trained
15 hour subset of Switchboard-1 Release 2 (LDC97S62), and
tested on Hub5 ‘00 (LDC2002S09) and its variants. More de-
tails about the training and test sets, and language models can
be found in [14]. Variants of original test set are created by arti-
ficially adding different noises at various signal-to-noise ratios.
We designed a synthetic band-limited noise which corrupts only
few streams (around 3-4 subband streams). The synthetic noise
guarantees that at least some of the streams remain uncorrupted
by noise, satisfying the basic premise of multistream system.
We also used subway, volvo, factory and babble noises from
NOISEX [11] database. These noises are used to analyze the
behavior of the system in a more natural real world settings.



The ASR system is trained using Kaldi speech recogni-
tion toolkit [16]. A GMM-HMM system is trained on speaker
adapted MFCC features [14]. The GMM-HMM system is used
to generate context-dependent alignments, which are used to
train DNN models. The DNN models used in this section con-
sist of 4 hidden layers. Each hidden layer consist of 1500 sig-
moidal neurons. The models are trained using cross entropy
cost function.

3.3. Performance Monitoring module

During test time, we use performance monitoring score as
proxy to accuracy, of a stream combination. We combine
autoencoder and M-delta based performance monitor measures
to identify stream combination which results in lowest error-
rate. We briefly describe these measures in this section. More
detailed description can be found in [8].
Autoencoder measure: Application of autoencoders for per-
formance monitoring task is based on the following idea: For
a given classifier, the best performing posteriors are its training
data. Performance of a test utterance can be estimated by
comparing the test posteriors with respect to the model derived
on the classifier’s training data posteriors. During testing,
quality of posteriors of a stream combination is evaluated using
reconstruction error values from the autoencoder.
M-delta measure: Main idea behind the measure is as follows:
posterior vectors belonging to the same class should have
smaller divergence than the divergence between posterior
vectors belonging to different classes. M-delta measure is
defined as Mdelta = Mac −Mwc, where Mac and Mwc

represent the accumulated KL-divergence computed from a
data pair from the same class and that from a data pair from
different classes, respectively. Mac and Mwc are estimated
fromM measure [13]. For a test utterance, M-delta measure is
computed for each stream combination. Posteriors from stream
combination having highest M-delta measure are selected.

3.4. Results

Table 1 show comparison results of baseline DNN with pro-
posed multistream DNN. The WER results are on test sets de-
scribed in 3.2. Baseline DNN refers to a DNN trained in a
standard way. Multistream DNN refers to a DNN trained us-
ing proposed technique (described in 2.1). Since the training
procedures of baseline DNN and multistream DNN differ, we
evaluated the performance of multistream DNN when the per-
formance monitor module is not used. Table 1 show that mul-
tistream DNN performs better than baseline DNN in all the test
conditions. This is due to the block dropout procedure intro-
duced during training of multistream DNN, which helps in reg-
ularizing the model.

Next we applied performance monitoring techniques based
on autoencoder and MDelta measures. Table 1 shows that ap-
plication of performance monitoring techniques significantly
improves performance in band-limited noisy conditions. This
shows that when the noises really localized only to few por-
tions of signal space, significant improvements can be obtained
by discarding information from low SNR portions and using
only high SNR portions. Even in subway and volvo noises, we
observed good improvements by using performance monitor-
ing module. Whereas, in factory and babble noise conditions
the improvements are not as substantial as that of band-limited,
subway and volvo conditions. This might be due to broad-band
nature of babble and factory noises, compared to band-limited,
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Figure 3: Block diagram of state-of-the-art ASR system used in
the present work. Noise robustness of the system is improved by
replacing neural network in Bottleneck Feature extractor mod-
ule with proposed Multistream neural network.

subway and volvo conditions
Also, the two performance monitoring techniques seems to

be competitive in most of the conditions, with MDelta measure
being slightly better than autoencoder. Combination of these
measures further improved the performance in all the noise con-
ditions, which shows complementary nature of the measures.
Next we applied the multistream DNN with performance moni-
toring module, to improve robustness in noise robust ASR tasks
with real noises.

4. Noisy speech recognition experiments
In this section, we apply multistream DNN with performance
monitoring module to improve robustness in noisy ASR tasks.
The ASR pipeline used for this purpose is shown in figure 3.
First component in the pipeline is a neural network trained to
extract bottleneck features (BNF) from acoustic features, re-
ferred to as bottleneck feature extractor. Bottleneck feature ex-
tractor used in present work consist of 3 hidden layers, con-
sisting of 1500 neurons each. These are followed by 40 di-
mensional linear bottleneck layer and a final logistic regression
layer. Inputs to bottleneck feature extractor are TRAP features
computed from log-Mel filterbanks (described in Sec. 3.1). The
bottleneck feature extractor is trained on context-dependent tar-
gets, obtained from a GMM-HMM system (described in Sec.
3.2).

Once the bottleneck feature extractor is trained, the entire
training data is forward passed to compute BNFs of the train-
ing data. A GMM system is trained on BNFs to estimate fM-
LLR transforms. A fully connected DNN is trained on the
fMLLR+BNF features, using cross entropy (CE) and sequence
minimum Bayes risk (sMBR) criterion.

We replace the bottleneck feature extractor with proposed
multistream neural network. This network is referred as mul-
tistream bottleneck feature extractor. In order to have a fair
comparison with baseline system, we keep the architecture of
multistream bottleneck feature extractor same as that of base-
line bottleneck feature extractor. This results in same number
of parameters for both the systems.

Multistream bottleneck feature extractor is trained using the
technique described in Sec. 2.1. BNFs for training further stages
of the pipeline (GMM and DNN acoustic models on BNFs) are
computed using the stream combination where all streams are
present. During testing phase, optimal stream combination is
identified by using performance monitoring module (Sec. 3.3),
and the corresponding BNFs are extracted and given as input to
further stages of the pipeline.

4.1. Aurora4 experiments:

We first demonstrate effectiveness in Aurora4 ASR task. Au-
rora4 task is a small scale, medium vocabulary speech recog-
nition task, aimed at improving noise and channel robustness.



Table 1: Comparison of WER (%) of proposed Multistream DNN with a feed-forward DNN, on eval2000 (clean) and its noisy variants.
All the models are trained on 15 hour subset of Switchboard corpus.

System \Test condition clean band-limited subway volvo factory babble
noise 10dB 20dB 10dB 20dB 10dB 20dB 10dB 20dB

Baseline DNN 34.3 64.6 71.3 49.4 79.6 50.5 78.0 48.3 78.2 48.4
Multistream DNN 32.8 51.6 68.8 45.7 77.8 45.6 75.8 44.8 76.6 44.9

+AE PM 33.0 40.9 62.5 44.5 73.7 44.9 74.4 44.7 75.1 44.9
+MDelta PM 32.6 40.6 59.6 42.8 73.1 44.6 73.6 44.4 73.4 44.5
+AE+MDelta PM 32.7 40.4 59.3 42.7 72.4 44.3 73.4 44.1 73.3 44.5

The database is based on DARPA Wall Street Journal (WSJ0)
corpus which consist of recordings of read speech, with 5000
word vocabulary size. The training set consists of 14 hours of
multi-condition data, sampled at 16 kHz. The 14 hours of data
is comprised of 7137 utterance from 83 speakers. Half of the ut-
terances were recorded by the primary Sennheiser microphone
and the other half were recorded using one of a number of differ-
ent secondary microphones. Both halves include a combination
of clean speech and speech corrupted by one of six different
noises (street traffic, train station, car, babble, restaurant, air-
port) at 10-20 dB signal-to-noise ratio.

The test set consist of 14 conditions, with 330 utterances
for each condition. The conditions include clean set recorder
with primary Sennheiser microphone, clean set with secondary
microphone, 6 additive noise conditions which include airport,
babble, car, restaurant, street and train noise at 5-15 dB signal-
to-noise ratio (SNR) and 6 conditions with the combination of
additive and channel noise.

Table 2 shows the comparison results of baseline system
and multistream system. BNF Xtr rows in table show decod-
ing results at the bottleneck feature extractor stage. Similar to
the results in table 1, we observe improvements by using multi-
stream neural network (relative improvement of 18.6 % across
all the conditions). The improvement is substantial in secondary
microphone conditions (C and D), which illustrates robustness
of multistream approach.

In order to compare multistream adaptation and traditional
speaker adaptation, we report results obtained from models
trained on fMLLR features. DNN CE rows show decoding re-
sults obtained from DNN models trained on fMLLR features,
by minimizing cross entropy objective function. We can ob-
serve from the table that, DNN models in multistream system
are consistently performing better than DNN models in base-
line system. This result shows that robustness obtained by using
multistream architecture can be complementary to traditional
speaker adaptation techniques. The gains are consistent (13.4
% relative improvement) even in state-of-the-art DNN models
trained on sequence minimum Bayes risk criterion (DNN sMBR
rows in the table).

4.2. IARPA Babel experiments

In this section, we report improvements obtained by using
multistream system in IARPA Babel data [12]. Experiments
are performed on BABEL OP3 languages: Igbo (IGB), Ja-
vanese (JAV), Guarani (GAU), Amharic (AMH) and Mongolian
(MON). We use Full Language Pack (FLP) condition to train
acoustic models of the ASR pipeline (Fig. 3). FLP scenario has
≈ 46 hours of transcribed audio available for each language.
Results are reported using Kneser-Ney smoothed tri-gram lan-
guage models.

Table 3 shows the results for the 5 languages. It is evident

Table 2: Comparison of WERs (%) at various stages in the ASR
pipeline of Fig. 3. Proposed Multistream system consistently
outperforms Baseline system at all stages of the pipeline.

A B C D Avg.

B
as

el
in

e BNF Xtr. 4.17 7.80 12.42 21.85 13.89
DNN CE 3.16 5.10 5.70 16.33 9.82
DNN sMBR 3.36 5.01 5.70 16.10 9.70

M
ul

tis
tr

ea
m BNF Xtr. 4.26 7.12 7.27 17.34 11.30

DNN CE 2.43 4.67 3.77 14.24 8.55
DNN sMBR 2.43 4.55 3.72 14.04 8.41

Table 3: WERs (%) of Monolingual BABEL systems trained us-
ing Full language pack data.

System IGB JAV GAU AMH MON
Baseline 60.5 58.0 46.7 43.6 52.2
Multistream 59.7 57.3 46.1 43.5 51.5

from the table, that multistream system is performing better
than baseline system. We observed a 0.7 % absolute decrease in
WER, in 4 of the 5 languages. The reason for this improvement
might be due to various real world acoustic conditions present
in Babel data [12]. These results show the generality of the pro-
posed system.

5. Conclusions
In this paper, we proposed a framework to make multistream ar-
chitecture more practical. We significantly reduced complexity
during training of a multistream system. We also made test-
ing phase much faster by using an efficient search technique
to identify best stream combination. The proposed techniques
can be used to construct a multistream system with much larger
number of streams. We applied multistream neural network
with proposed training and testing techniques, in various noisy
speech recognition tasks. Noticeable improvements were ob-
served over state-of-the-art baseline ASR architecture. Also, the
results indicate that proposed system is more robust to acoustic
mis-matches than baseline system.
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