
Improvements in Language Identification on the RATS Noisy Speech Corpus

Jeff Ma1, Bing Zhang1, Spyros Matsoukas1,
Sri Harish Mallidi2, Feipeng Li2, Hynek Hermansky2

1 Raytheon BBN Technologies, USA
2 The John Hopkins University, USA

{jma,bzhang,smatsouk}@bbn.com, mallidi@jhu.edu, fli12@jhmi.edu, hynek@jhu.edu

Abstract
This paper presents a set of techniques that we used to develop
the language identification (LID) system for the second phase
of the DARPA RATS (Robust Automatic Transcription of
Speech) program, which seeks to advance state-of-the-art
detection capabilities on audio from highly degraded radio
communication channels. We report significant gains due to
(a) improved speech activity detection, (b) special handling of
training data so as to enhance performance on short duration
audio samples, and (c) noise robust feature extraction and
normalization methods, including the use of multi-layer
perceptron (MLP) based phoneme posteriors. We show that
on this type of noisy data, the above techniques provide on
average a 27% relative improvement in equal error rate (EER)
across several test duration conditions.

Index Terms: language identification, noisy speech, robust
feature extraction

1. Introduction
The goal of the DARPA RATS (Robust Automatic
Transcription of Speech) program is to create technology
capable of accurately determining speech activity regions,
detecting key words, and identifying language and speakers in
highly degraded, weak and/or noisy communication channels.
The Patrol team, led by BBN, participates in all the RATS
tasks. The LID system that the Patrol team built for the RATS
Phase 1 evaluation was described in [1]. That paper mainly
focused on the individual systems built by members of the
Patrol team, as well as on the calibration and the fusion of the
individual systems. In this paper we concentrate on the work
that was conducted to improve the BBN system for the RATS
Phase 2 evaluation.
 This paper is organized as follows: Section 2 describes the
RATS LID data corpus that we used for developing our
systems; Section 3 briefly reviews the BBN LID Phase-1
system; Section 4 presents improvements on various
components of the BBN system; Section 5 concludes this
paper.

2. The RATS LID Data Corpus
The Linguistic Data Consortium (LDC) provided training and
test data for the RATS evaluation tasks. For the LID
evaluation task, the provided audio recordings cover the 5
target languages (Arabic, Dari, Farsi, Pashto, and Urdu) and
the 10 non-target languages (English, Spanish, Mandarin,
Thai, Vietnamese, Russian, Japanese, Bengali, Korean,
Tagalog). These recordings were selected from both existing
data resources and new data collected specifically for RATS
(more details can be found in [1]). All recordings were about

2 minutes long and were retransmitted through 8 different
communication channels, labeled by the letters A through H.
The retransmitted data was released to the RATS participants
for developing their evaluation systems. LDC issued 3
incremental data releases for the LID task: LDC2011E95,
LDC2011E111, and LDC2012E03. We only used the first two
releases for developing our LID systems.
 All LID systems were evaluated under four testing
conditions in which test samples are 120, 30, 10, and 3
seconds long, respectively. In this paper we use “120s”,
“30s”, “10s”, and “3s” to represent the four conditions. The
RATS program does not provide development data for the
short-duration conditions, “30s”, “10s” and “3s”. Hence the
participants need to find ways to develop systems for the
short-duration conditions.
 As described in [1], we partitioned the first two data
releases into training and development sets. To construct
development samples for the shorter durations, on each of the
120s development audio samples we started from the
beginning of the audio, cut out the first 30, 10 and 3 seconds
of speech (based on BUT’s voice activity detection) to obtain
“30s”, “10s” and “3s” development samples, respectively.
Right before the Phase 1 evaluation, a small official
development set was released for the purpose of a “dry-run”
evaluation. By examining the “dry-run” test samples, we saw
that the cut-outs of the short-duration samples did not always
start from the beginning of the 120s audio samples. For the
Phase-2 evaluation we used our Phase-1 training-development
partition, but re-cut the short-duration development samples
by starting at randomly selected time points, rather than
always starting from the beginning. Another change was that
the re-cutting was done based on BBN’s speech activity
detection (SAD) system. As we did in Phase-1, we added the
official “dry-run” test set to the development set. The total
number of test samples in the development set was kept the
same as before, about 7,120 samples for each condition. In the
rest of the paper, we use “Dev” to denote this development set.
 We also measured LID performance on one adjudicated
version of the LID Phase 1 evaluation data (also called Dev2
within the RATS program), which includes 1,914, 1,782,
1,715, 1,340 samples for the “120s”, “30s”, “10s” and “3s”
conditions, respectively. We use “Eval” to denote this
evaluation set.

3. Baseline System Description
We first briefly review the LID system that BBN built for the
phase-1 evaluation, which will serve as the baseline system for
measuring improvements we report in this paper. The BBN
LID system consisted of 4 major components, speech activity
detection (SAD), feature extraction, I-vector estimation, and
neural network (NN) LID classifier.

Copyright © 2013 ISCA 25-29 August 2013, Lyon, France

INTERSPEECH 2013

69

3.1. Speech Activity Detection (SAD)

The SAD system that BBN built for RATS was carried out in
three main steps [2]. First, the input frame-level acoustic
features are projected to a lower-dimensional space
using heteroscedastic linear discriminant analysis (HLDA).
Second, the reduced features are used to compute per-frame
log likelihood scores with respect to speech and non-speech
classes, each class being represented separately by a
Gaussian mixture model (GMM). Third, the frame-level log
likelihood scores are mapped to speech/non-speech
classification decisions to produce final segmentation outputs.
The mapping is done by computing the average per-frame log
likelihood ratios, based on a sliding window, and comparing
the smoothed likelihood ratios to a threshold. Frames with
scores higher than the threshold are classified as speech, and
the rest as non-speech.

3.2. Feature extraction

The commonly used feature extraction method for LID is the
shifted delta cepstra (SDC) algorithm [3, 4], applied to MFCC
or PLP feature vectors. The shifted delta can be considered as
a special case of an approach that projects concatenated
cepstral frames down to sub-space features through HLDA [5].
The most commonly used SDC scheme, [7-1-3-7], extracts
features from a span of 39 successive frames, and essentially
projects 39 frames of cepstral features down to a 56-
dimensional sub-space using a fixed pre-determined projection
matrix. In our LID experiments we estimated HLDA by
maximizing the likelihood of a model that consisted of a single
Gaussian for 5 classes represent the 5 target languages and one
additional class representing all the non-target languages. We
used the PLP cepstral feature for training our LID systems.
During the Phase-1 system development we explored various
HLDA configurations and found that the best configuration, in
terms of the LID performance, was to project 11 frames, each
frame including energy and the first 8 PLP coefficients, down
to 60-dimensional sub-space features. We also found that this
configuration produced better LID performance compared to
the SDC method. Therefore, we continued to use the above
HLDA configuration during our Phase-2 system development.

3.3. I-vector estimation

We estimated I-vectors according to the algorithm described in
[6]. As done in [7], during the estimation we do the minimum
divergence (MD) update [8, 9] to speed up the convergence.
Besides the MD, we also revised the estimation with an
“iterative” procedure that adapts the universal background
model (UBM) to speakers at each iteration and then uses the
adapted model to re-compute the posterior probabilities that
are used for collecting the sufficient statistics for the I-vector
estimation. We estimated 400-dimension I-vectors for the
training of LID systems.
 As mentioned before, all the LID training samples had at
least 2 minutes of audio. So, in terms of audio length these
training samples do not match the short-duration (30s, 10s and
3) test samples. To make the training better match the shorter
duration test conditions, during the Phase-1 system
development, we estimated the “20s” I-vectors for audio
chunks of approximately 20 seconds of speech. The chunks
were generated by grouping adjacent speech regions within
each training audio file. We them combined these “20s” I-
vectors with the regular I-vectors estimated on the entire

audios to train the LID classifier. Our results showed (as
expected) that adding the “20s” I-vectors to training improved
the performance on the short-duration testing conditions.

3.4. NN LID classifiers

We compared three approaches for building the LID
classifiers. One was the generative model approach [10] -
training one single Gaussian model (SGM) for each language;
The second one was the approach used in [6] that first applies
linear discriminative analysis (LDA) on I-vectors, then carries
out within-class covariance normalization (WCCN) and finally
computes cosine distances as the final outputs. The third
approach, developed at BBN, was to use neural networks as
the LID classifier. We used the ICSI Quicknet NN tools [11]
to train our NNs so as to map the I-vectors into language
posteriors. We configured all our NNs with 3 layers (input,
hidden, and output) with the input layer taking the I-vectors as
inputs and the output layer generating posteriors for the 6
language classes. In all our classifier training we trained 4
NNs with the number of hidden nodes setting at 400, 500, 600
and 700, respectively, and took the arithmetic mean of the 4
NN output posteriors as the final outputs. Our comparison
revealed that the NN classifier performed significantly better
than the other two classifiers. For the phase-2 evaluation we
kept using NNs as the LID classifier.

4. System Enhancements and Results
The RATS program sets higher accuracy targets for each
successive phase evaluation. The LID Phase-2 targets are
much more challenging, especially on the “10s” and “3s” test
conditions. Therefore, for the Phase-2 system development,
we focused on improving the LID system performance on the
“10s” and “3s” test conditions. We will only report the
performance measured on these two short-duration conditions
in this paper. We measured the LID performance according to
three metrics, EER, Cavg (computed the same way as in the
NIST LRE evaluation), and one of the RATS Phase-2
operating points – miss rate at false alarm rate equal to 5% (we
denote it as “Pmiss_5”). We report the EER, Cavg and
Pmiss_5 scores as percentage numbers in this paper.

4.1. Modeling of short-duration conditions

As described before, the “20s” I-vectors estimated on chunks
of 20s of speech improved our LID system performance on the
short-duration test conditions in the Phase-1 evaluation. We
would expect further gains on the “10s” and “3s” test
conditions if we estimate I-vectors on speech chunks shorter
than 20 seconds. Since our focus for the Phase-2 evaluation
was the “10s” and “3s” test conditions, we resumed the work
in this direction. We estimated I-vectors on chunks that have
10s and 3s of speech and added the I-vectors to the training of
the NN LID classifiers, respectively. Performance of the
systems trained with different sets of I-vector is shown in
Table 1. In the “System” column, the “+20s”, “+10s” and
“+3s” represent the systems trained with the regular I-vectors
(estimated on the entire audios) plus the “20s”, “10s” and “3s”
I-vectors, respectively. I also trained a LID system using the
“3s” I-vectors only, which is denoted as “3s only” in the table,
hoping it achieve the best performance on the “3s” test
condition.

70

Table 1: LID performance (EER/Cavg/Pmiss_5),
measured on the Dev set, for systems trained with

different sets of I-vectors

System “10s” condition “3s” condition
+20s 10.18/10.75/18.18 23.10/24.44/53.99
+10s 9.79/10.23/16.29 21.85/23.41/50.40

+3s 9.52/10.20/16.10 21.50/22.50/49.21

3s only 9.70/10.49/16.15 21.89/23.00/ 49.75

As can be seen, adding I-vectors estimated on shorter

speech chunks to the training kept improving the performance
on the shorter test conditions. Adding the “3s” I-vectors to the
training produced the best performance on both the “10s” and
“3s” test conditions.

It is a little out of expectation to observe that the “3s only”
system did not produce better performance on the “3s” testing
condition than the “+3s” system did. Based on these results,
we always added the “3s” I-vectors to our LID system training
later.

4.2. Improving SAD

For the phase-2 evaluation we re-trained the GMM SAD
system, used for the LID task, with changes in the following
dimensions:

• trained on the full RATS SAD training set, about
1900 hours

• increased size of GMMs (from 512 to 2048 mixture
components)

• Gaussian parameters estimated using maximum
mutual information (MMI) criterion rather than
maximum likelihood (ML)

• The size of the sliding window used in the last step
changed from 81 frames to 41 frames.

All these changes helped improving the SAD performance.
We observed that the last change (reducing the sliding window
size from 81 to 41) improved the SAD performance on the
short-duration test conditions greatly. We re-ran speech
detection with this improved SAD on both the LID training
and test data and re-trained the “+3s” system. We denote this
re-trained system as “+P2-SAD” and its performance is shown
in Table 2. Compared to the “+3s” system, the “+P2-SAD”
produced small gains on the “10s” condition and large gains
(about 10% relative) on the “3s” condition.

4.3. Using MLP phoneme posterior features

The primary focus of the RATS program is the challenge of
highly degraded and/or noisy voice signals. The Patrol team
had taken great efforts in extracting robust features. One of
such efforts was the multi-stream (MS) feature developed in
The John Hopkins University (JHU), one of the Patrol team
members. The multi-stream feature is created by decomposing
the narrow-band speech into 5 sub-bands (or streams), each of
which covers about 3 critical bands along the frequency. To
improve the speech information being extracted from
individual streams, the filter bank of uniform bandwidth in the
single stream, the frequency-domain linear prediction (FDLP)
[12], is replaced with a multi-resolution filter bank that

consists of two sets of filters of different bandwidths. A five-
layer multi-layer perceptron (MLP) of size
(390,1500,1500,1500,39) was trained in each stream to
classify the narrow-band speech signal using the extended
FDLP feature. Then the posterior probabilities from the five
streams are integrated by a fusion MLP of size
(125,1500,1500,1500,39) to produce the multi-stream feature.

For the RATS key word spotting (KWS) task, LDC
released Levantine Arabic data with annotated transcriptions
(about 380 hours of speech). On this data JHU trained MLPs
with the MS feature to produce posterior probabilities for 39
phonemes. Then the posteriors were transformed into tandem
feature by applying a logarithm followed by a Karhunen-
Loève transform (KLT), which reduces the feature
dimensionality from 39 to 25. For simplicity of notation, we
use “MS-MLP” to denote these 25-dimensional features.
These “MS-MLP” features helped improve our KWS system
when they were used together with our regular PLP features.
Hence, we tried to use them in our LID system training. We
appended these 25-dimension “MS-MLP” features to the
concatenated 11 PLP frames and then used HLDA to project
them down to 60-dimensional sub-space features. We re-
trained the “+P2-SAD” system with these new features. This
re-trained system is denoted as “+MS-MLP” in Table 2.
Comparing these two systems, we can see that the use of the
“MS-MLP” features improved the LID performance
significantly – about 20-30% relatively on both the “10s” and
“30s” test conditions.

Table 2: LID performance (EER/Cavg/Pmiss_5),
measured on the "Dev" set, of systems trained with the

improved SAD, MLP phoneme posteriors and
language-dependent UBMs

System “10s” condition “3s” condition
+20s 10.18/10.75/18.18 23.10/24.44/53.99
+3s 9.52/10.20/16.29 21.50/22.50/49.21
+P2-SAD 8.75/9.28/13.87 18.73/19.37/42.34
+MS-MLP 6.14/6.75/7.47 14.94/15.58/31.31
+LDUBM 4.84/5.32/4.69 12.64/13.31/24.76

Table 3: LID performance (EER/Cavg/Pmiss_5),
measured on the "Eval" set, of systems trained with
the improved SAD, MLP phoneme posteriors and

language-dependent UBMs

Systems “10s” condition “3s” condition
+20s 14.13/16.88/26.78 20.59/24.01/46.87
+3s 12.45/16.21/22.58 19.52/22.60/43.86
+P2-SAD 12.66/15.80/22.21 17.90/20.66/40.55
+MS-MLP 10.09/13.63/16.82 15.40/17.32/28.68
+LDUBM 8.60/12.55/12.07 12.76/14.91/25.68

4.4. Training language dependent I-vectors

The universal background model (UBM) used for I-vector
estimation is usually trained with data from all classes, such as
speakers and languages, and then the estimated I-vectors tend

71

to represent variations from each class to the UBM. In our LID
training there are 6 classes – 5 target languages and the non-
target languages. If we train the UBM with data only from
one language, the estimated I-vectors would tend to reflect the
variations from the language to the other languages. We
expected the I-vectors estimated with the language-dependent
UBM (LDUBM) would bring complementary information to
each other when we use them together.
 Motivated by this idea, for each of the 6 language classes
we train one set of I-vectors with its LDUBM. Then for each
set of the I-vectors we trained one NN LID classifier. During
the LID testing, we combined the posteriors from the 6 NN
classifiers by taking the geometric mean as the final LID
outputs. Each set of the I-vectors and its corresponding NN
classifier were trained in the same way as the “+MS-MLP”
system was trained. We use “+LDUBM” to denote this
language-dependent system and its performance is shown in
Table 2. Compared to the “+MS-MLP” system, this language-
dependent system improved the performance by 15-20%
relative on the two test conditions. There gains are significant.
 The performance of all the above systems measured on the
“Eval” test set is shown in Table 3. As can be seen, the
incremental improvements observed on the “Dev” set are also
observed on the “Eval” set.

5. Analysis on the MS-MLP features
As shown in Section 4, the largest improvements came from
the use of the MS-MLP phoneme posterior features. As
described before, the MLP used to generate the phoneme
posterior features was trained with the RATS KWS Levantine
Arabic data, which we thought possibly had some overlaps
with the Levantine Arabic data included in our “Dev” set (it is
non-trivial to identify the overlaps due to the inconsistence
between the audio file names). To completely eliminate effects
that could be caused by the possible data overlap, we excluded
the Levantine Arabic language from both the LID training and
test. Hence, all our following analysis experiments were set up
to do LID on the 4 remaining target plus the 10 non-target
languages.

We first re-trained the “+P2-SAD” and “+MS-MLP”
systems with Levantine language excluded. They are denoted
as “PLP” and “PLP+MS-MLP” in Table 4 (the 2nd and 4th
rows), respectively. Comparing these two systems, we can see
that the use of the “MS-MLP” feature produced similar gains
as observed before (“+P2-SAD” vs. “+MS-MLP”). This
confirms that the gains from the “MS-MLP” feature did not
result from the data overlap on the Levantine language.

Next, we checked if the “MS-MLP” feature itself out-
performs the regular PLP feature. We re-trained the “PLP”
system by replacing the PLP with the “MS-MLP” feature. As
we did for the PLP feature, we tried different HLDA
configurations and found that the HLDA projecting 3
concatenated “MS-MLP” frames down to 60-dimension
features produced the best performance. This system is
denoted as “MS-MLP” in Table 4 (the 3rd row). Compared to
the “PLP” system, it produced the similar performance. So the
“MS-MLP” feature itself did not out-perform the PLP feature.

Lastly, we tried to verify if the MS feature helped
generating better quality of phoneme posterior features, which
resulted in the LID gains. As described before, the MS feature
was only used in the training of the MLP that generated the
phoneme posteriors. Therefore, we re-generated the phoneme

posterior features, but replacing the MS feature with the
single-stream FDLP feature and the regular PLP feature in the
MLP training step, respectively. We denoted these two new
sets of phoneme posterior features as “FDLP-MLP” and “PLP-
MLP”. We then re-trained the “MS-MLP” system with
replacing the “MS-MLP” feature with the “FDLP-MLP” and
“PLP-MLP” features, respectively. These two systems are
denoted as “PLP+FDLP-MLP” and “PLP+PLP-MLP” in
Table 4 (the 5th and 6th rows). As can be seen, these two
systems produced similar performance as the “PLP+MS-PLP”
system did. This indicates the MS front-end did not
outperform other front-ends in the MLP posterior feature
generation.

Table 4: LID performance (EER/Cavg), measured on
the "Dev" set, for systems trained with different MLP

phoneme posteriors

Features “10s” condition “3s” condition

PLP 8.99/9.38 17.82/18.37

MS-MLP 8.65/9.20 17.86/18.40

PLP + MS-MLP 7.01/7.25 15.47/15.90

PLP + FDLP-MLP 7.05/7.28 16.00/16.40

PLP + PLP-MLP 6.95/7.21 14.75/15.02

From the above analyses we can conclude that the MLP

phoneme posterior features themselves do not outperform the
regular PLP feature in the training of the LID system. But,
together with the PLP feature, the MLP features always
improved the LID performance, no matter what cepstral
features are used to train the MLPs.

6. Conclusions
We have presented the work we conducted for improving our
LID system for the RATS Phase-2 evaluation. We had
improved our speech activity detection, feature extraction and
LID modeling. The improved SAD helped improving our LID
system performance by about 10% relative, the use of the
MLP phoneme posterior features improved the LID
performance by 20-30% relative, and the language-dependent
system trained with the LDUBMs improved the performance
by about 20% relative.
 The largest improvement came from the use of the MLP
posterior features. Our further analyses on the MLP feature
revealed that the improvements were due to the
complementary information the MLP features carry in and the
choice of the front-end used to train the MLP was not crucial.

7. Acknowledgments
This work was supported by the DARPA RATS Program. The
views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the
U.S. Government.

72

8. References
[1] Matejka, P., et al., “Patrol Team Language Identification System

for DARPA RATS P1 Evaluation”, ISCLP2012.
[2] Ng, T., Zhang, B., Nguyen, L., et al., “Developing a Speech

Activity Detection System for the DARPA RATS Program”, in
Interspeech 2012.

[3] Bielefeld, B., "Language identification using shifted delta
cepstrum," In Fourteenth Annual Speech Research Symposium,
1994.

[4] Torres-Carrasquillo, P. A., Singer, E., et al., "Approaches to
language identification using Gaussian mixture models and
shifted delta cepstral features", Proc. ICSLP\'02, pp.90 -93
2002.

[5] Kumar, N. and Andreou, A.G., "Heteroscedastic discriminant
analysis and reduced rank HMMs for improved speech
recognition", Speech Communication, Vol. 26, No. 4, December,
1998.

[6] Dehak, N., Kenny, P., Dehak, R., Dumouchel, P. and Ouellet, P.,
“Front-end Factor Analysis for Speaker Verification”, IEEE
Transactions on Speech and Audio Processing, Vol. 19, No.4,
2011.

[7] Glembek, O., Burget, L., Matejka, P., Karafiat, M. and Kenny,
P., “Simplification and optimization of I-vector extraction”, pp.
4516-4519, ICASSP 2011.

[8] Brummer,N., “The EM algorithm and minimum divergence”.
Agnitio Labs Technical Report
(http://niko.brummer.googlepages.com/EMandMINDIV.pdf),
Oct. 2009

[9] Kenny, P., “Joint factor analysis of speaker and session
variability: Theory and algorithms”, Technical report CRIM-
06/08-13, Montreal, CRIM, 2005.

[10] Martinez, D., Plchot, O., Burget, L., Glembek, O. and Matejkea,
P., “Language Recognition in iVectors Space”, in the
proceedings of Interspeech 2011.

[11] http://www.icsi.berkeley.edu/Speech/icsi-speech-tools.html
[12] Ganapathy, S., Thomas, S., and Hermansky, H., “Temporal

envelope compensation for robust phoneme recognition using
modulation spectrum”, J. Acoust. Soc. Amer. 128(6):3769--
3780, 2010.

73

