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Abstract 
This paper presents a set of techniques that we used to develop 
the language identification (LID) system for the second phase 
of the DARPA RATS (Robust Automatic Transcription of 
Speech) program, which seeks to advance state-of-the-art 
detection capabilities on audio from highly degraded radio 
communication channels. We report significant gains due to 
(a) improved speech activity detection, (b) special handling of 
training data so as to enhance performance on short duration 
audio samples, and (c) noise robust feature extraction and 
normalization methods, including the use of multi-layer 
perceptron (MLP) based phoneme posteriors.  We show that 
on this type of noisy data, the above techniques provide on 
average a 27% relative improvement in equal error rate (EER) 
across several test duration conditions.  

Index Terms: language identification, noisy speech, robust 
feature extraction 

1. Introduction 
The goal of the DARPA RATS (Robust Automatic 
Transcription of Speech) program is to create technology 
capable of accurately determining speech activity regions, 
detecting key words, and identifying language and speakers in 
highly degraded, weak and/or noisy communication channels. 
The Patrol team, led by BBN, participates in all the RATS 
tasks. The LID system that the Patrol team built for the RATS 
Phase 1 evaluation was described in [1]. That paper mainly 
focused on the individual systems built by members of the 
Patrol team, as well as on the calibration and the fusion of the 
individual systems.  In this paper we concentrate on the work 
that was conducted to improve the BBN system for the RATS 
Phase 2 evaluation.  
    This paper is organized as follows: Section 2 describes the 
RATS LID data corpus that we used for developing our 
systems; Section 3 briefly reviews the BBN LID Phase-1 
system; Section 4 presents improvements on various 
components of the BBN system; Section 5 concludes this 
paper. 

2. The RATS LID Data Corpus 
The Linguistic Data Consortium (LDC) provided training and 
test data for the RATS evaluation tasks. For the LID 
evaluation task, the provided audio recordings cover the 5 
target languages (Arabic, Dari, Farsi, Pashto, and Urdu) and 
the 10 non-target languages (English, Spanish, Mandarin, 
Thai, Vietnamese, Russian, Japanese, Bengali, Korean, 
Tagalog). These recordings were selected from both existing 
data resources and new data collected specifically for RATS 
(more details can be found in [1]).  All recordings were about 

2 minutes long and were retransmitted through 8 different 
communication channels, labeled by the letters A through H.  
The retransmitted data was released to the RATS participants 
for developing their evaluation systems.  LDC issued 3 
incremental data releases for the LID task: LDC2011E95, 
LDC2011E111, and LDC2012E03. We only used the first two 
releases for developing our LID systems.  
    All LID systems were evaluated under four testing 
conditions in which test samples are 120, 30, 10, and 3 
seconds long, respectively.  In this paper we use “120s”, 
“30s”, “10s”, and “3s” to represent the four conditions. The 
RATS program does not provide development data for the 
short-duration conditions, “30s”, “10s” and “3s”. Hence the 
participants need to find ways to develop systems for the 
short-duration conditions.    
    As described in [1], we partitioned the first two data 
releases into training and development sets. To construct 
development samples for the shorter durations, on each of the 
120s development audio samples we started from the 
beginning of the audio,  cut out the first 30, 10 and 3 seconds 
of speech (based on BUT’s voice activity detection) to obtain 
“30s”, “10s” and “3s” development samples, respectively. 
Right before the Phase 1 evaluation, a small official 
development set was released for the purpose of a “dry-run” 
evaluation.  By examining the “dry-run” test samples, we saw 
that the cut-outs of the short-duration samples did not always 
start from the beginning of the 120s audio samples. For the 
Phase-2 evaluation we used our Phase-1 training-development 
partition, but re-cut the short-duration development samples 
by starting at randomly selected time points, rather than 
always starting from the beginning. Another change was that 
the re-cutting was done based on BBN’s speech activity 
detection (SAD) system. As we did in Phase-1, we added the 
official “dry-run” test set to the development set.  The total 
number of test samples in the development set was kept the 
same as before, about 7,120 samples for each condition.  In the 
rest of the paper, we use “Dev” to denote this development set.  
    We also measured LID performance on one adjudicated 
version of the LID Phase 1 evaluation data (also called Dev2 
within the RATS program), which includes 1,914, 1,782, 
1,715, 1,340 samples for the “120s”, “30s”, “10s” and “3s” 
conditions, respectively. We use “Eval” to denote this 
evaluation set. 

3. Baseline System Description 
We first briefly review the LID system that BBN built for the 
phase-1 evaluation, which will serve as the baseline system for 
measuring improvements we report in this paper. The BBN 
LID system consisted of 4 major components, speech activity 
detection (SAD), feature extraction, I-vector estimation, and 
neural network (NN) LID classifier. 
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3.1.  Speech Activity Detection (SAD)  

The SAD system that BBN built for RATS was carried out in 
three main steps [2]. First, the input frame-level acoustic 
features are projected to a lower-dimensional space  
using heteroscedastic linear discriminant analysis (HLDA).  
Second, the reduced features are used to compute per-frame 
log likelihood scores with respect to speech and non-speech 
classes, each class being represented separately by a  
Gaussian mixture model (GMM). Third, the frame-level log 
likelihood scores are mapped to speech/non-speech  
classification decisions to produce final segmentation outputs. 
The mapping is done by computing the average per-frame log 
likelihood ratios, based on a sliding window, and comparing 
the smoothed likelihood ratios to a threshold.  Frames with 
scores higher than the threshold are classified as speech, and 
the rest as non-speech.  

3.2. Feature extraction  

The commonly used feature extraction method for LID is the 
shifted delta cepstra (SDC) algorithm [3, 4], applied to MFCC 
or PLP feature vectors. The shifted delta can be considered as 
a special case of an approach that projects concatenated 
cepstral frames down to sub-space features through HLDA [5]. 
The most commonly used SDC scheme, [7-1-3-7], extracts 
features from a span of 39 successive frames, and essentially 
projects 39 frames of cepstral features down to a 56-
dimensional sub-space using a fixed pre-determined projection 
matrix. In our LID experiments we estimated HLDA by 
maximizing the likelihood of a model that consisted of a single 
Gaussian for 5 classes represent the 5 target languages and one 
additional class representing all the non-target languages. We 
used the PLP cepstral feature for training our LID systems. 
During the Phase-1 system development we explored various 
HLDA configurations and found that the best configuration, in 
terms of the LID performance, was to project 11 frames, each 
frame including energy and the first 8 PLP coefficients, down 
to 60-dimensional sub-space features. We also found that this 
configuration produced better LID performance compared to 
the SDC method.  Therefore, we continued to use the above 
HLDA configuration during our Phase-2 system development. 

3.3. I-vector estimation 

We estimated I-vectors according to the algorithm described in 
[6]. As done in [7], during the estimation we do the minimum 
divergence (MD) update [8, 9] to speed up the convergence.  
Besides the MD, we also revised the estimation with an 
“iterative” procedure that adapts the universal background 
model (UBM) to speakers at each iteration and then uses the 
adapted model to re-compute the posterior probabilities that 
are used for collecting the sufficient statistics for the I-vector 
estimation. We estimated 400-dimension I-vectors for the 
training of LID systems. 
    As mentioned before, all the LID training samples had at 
least 2 minutes of audio. So, in terms of audio length these 
training samples do not match the short-duration (30s, 10s and 
3) test samples.  To make the training better match the shorter 
duration test conditions, during the Phase-1 system 
development, we estimated the “20s” I-vectors for audio 
chunks of approximately 20 seconds of speech.  The chunks 
were generated by grouping adjacent speech regions within 
each training audio file. We them combined these “20s” I-
vectors with the regular I-vectors estimated on the entire 

audios to train the LID classifier. Our results showed (as 
expected) that adding the “20s” I-vectors to training improved 
the performance on the short-duration testing conditions.   

3.4. NN LID classifiers 

We compared three approaches for building the LID 
classifiers. One was the generative model approach [10] - 
training one single Gaussian model (SGM) for each language; 
The second one was the approach used in [6] that first applies 
linear discriminative analysis (LDA) on I-vectors, then carries 
out within-class covariance normalization (WCCN) and finally 
computes cosine distances as the final outputs. The third 
approach, developed at BBN, was to use neural networks as 
the LID classifier. We used the ICSI Quicknet NN tools [11] 
to train our NNs so as to map the I-vectors into language 
posteriors.  We configured all our NNs with 3 layers (input, 
hidden, and output) with the input layer taking the I-vectors as 
inputs and the output layer generating posteriors for the 6 
language classes. In all our classifier training we trained 4 
NNs with the number of hidden nodes setting at 400, 500, 600 
and 700, respectively, and took the arithmetic mean of the 4 
NN output posteriors as the final outputs.  Our comparison 
revealed that the NN classifier performed significantly better 
than the other two classifiers. For the phase-2 evaluation we 
kept using NNs as the LID classifier.  

4. System Enhancements and Results 
The RATS program sets higher accuracy targets for each 
successive phase evaluation. The LID Phase-2 targets are 
much more challenging, especially on the “10s” and “3s” test 
conditions.  Therefore, for the Phase-2 system development, 
we focused on improving the LID system performance on the 
“10s” and “3s” test conditions. We will only report the 
performance measured on these two short-duration conditions 
in this paper.  We measured the LID performance according to 
three metrics, EER, Cavg (computed the same way as in the 
NIST LRE evaluation), and one of the RATS Phase-2 
operating points – miss rate at false alarm rate equal to 5% (we 
denote it as “Pmiss_5”). We report the EER, Cavg and 
Pmiss_5 scores as percentage numbers in this paper. 

4.1. Modeling of short-duration conditions 

As described before, the “20s” I-vectors estimated on chunks 
of 20s of speech improved our LID system performance on the 
short-duration test conditions in the Phase-1 evaluation. We 
would expect further gains on the “10s” and “3s” test 
conditions if we estimate I-vectors on speech chunks shorter 
than 20 seconds.  Since our focus for the Phase-2 evaluation 
was the “10s” and “3s” test conditions, we resumed the work 
in this direction. We estimated I-vectors on chunks that have 
10s and 3s of speech and added the I-vectors to the training of 
the NN LID classifiers, respectively.  Performance of the 
systems trained with different sets of I-vector is shown in 
Table 1. In the “System” column, the “+20s”, “+10s” and 
“+3s” represent the systems trained with the regular I-vectors 
(estimated on the entire audios) plus the “20s”, “10s” and “3s” 
I-vectors, respectively.  I also trained a LID system using the 
“3s” I-vectors only, which is denoted as “3s only” in the table, 
hoping it achieve the best performance on the “3s” test 
condition. 
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Table 1:  LID performance (EER/Cavg/Pmiss_5), 
measured on the Dev set, for systems trained with 

different sets of I-vectors 

System “10s” condition “3s” condition 
+20s 10.18/10.75/18.18 23.10/24.44/53.99 
+10s 9.79/10.23/16.29 21.85/23.41/50.40 

+3s 9.52/10.20/16.10 21.50/22.50/49.21 

3s only 9.70/10.49/16.15 21.89/23.00/ 49.75 

 
As can be seen, adding I-vectors estimated on shorter 

speech chunks to the training kept improving the performance 
on the shorter test conditions. Adding the “3s” I-vectors to the 
training produced the best performance on both the “10s” and 
“3s” test conditions.   

It is a little out of expectation to observe that the “3s only” 
system did not produce better performance on the “3s” testing 
condition than the “+3s” system did. Based on these results, 
we always added the “3s” I-vectors to our LID system training 
later.  

4.2. Improving SAD 

For the phase-2 evaluation we re-trained the GMM SAD 
system, used for the LID task, with changes in the following 
dimensions:  

• trained on the full RATS SAD training set, about 
1900 hours 

• increased size of GMMs (from 512 to 2048 mixture 
components)  

• Gaussian parameters estimated using maximum 
mutual information (MMI) criterion rather than 
maximum likelihood (ML) 

• The size of the sliding window used in the last step 
changed from 81 frames to 41 frames.  

All these changes helped improving the SAD performance. 
We observed that the last change (reducing the sliding window 
size from 81 to 41) improved the SAD performance on the 
short-duration test conditions greatly. We re-ran speech 
detection with this improved SAD on both the LID training 
and test data and re-trained the “+3s” system. We denote this 
re-trained system as “+P2-SAD” and its performance is shown 
in Table 2. Compared to the “+3s” system, the “+P2-SAD” 
produced small gains on the “10s” condition and large gains 
(about 10% relative) on the “3s” condition. 

4.3. Using MLP phoneme posterior features 

The primary focus of the RATS program is the challenge of 
highly degraded and/or noisy voice signals. The Patrol team 
had taken great efforts in extracting robust features. One of 
such efforts was the multi-stream (MS) feature developed in 
The John Hopkins University (JHU), one of the Patrol team 
members. The multi-stream feature is created by decomposing 
the narrow-band speech into 5 sub-bands (or streams), each of 
which covers about 3 critical bands along the frequency. To 
improve the speech information being extracted from 
individual streams, the filter bank of uniform bandwidth in the 
single stream, the frequency-domain linear prediction (FDLP) 
[12], is replaced with a multi-resolution filter bank that 

consists of two sets of filters of different bandwidths. A five-
layer multi-layer perceptron (MLP) of size 
(390,1500,1500,1500,39) was trained in each stream to 
classify the narrow-band speech signal using the extended 
FDLP feature. Then the posterior probabilities from the five 
streams are integrated by a fusion MLP of size 
(125,1500,1500,1500,39) to produce the multi-stream feature. 

For the RATS key word spotting (KWS) task, LDC 
released Levantine Arabic data with annotated transcriptions 
(about 380 hours of speech).  On this data JHU trained MLPs 
with the MS feature to produce posterior probabilities for 39 
phonemes. Then the posteriors were transformed into tandem 
feature by applying a logarithm followed by a Karhunen-
Loève transform (KLT), which reduces the feature 
dimensionality from 39 to 25. For simplicity of notation, we 
use “MS-MLP” to denote these 25-dimensional features. 
These “MS-MLP” features helped improve our KWS system 
when they were used together with our regular PLP features. 
Hence, we tried to use them in our LID system training. We 
appended these 25-dimension “MS-MLP” features to the 
concatenated 11 PLP frames and then used HLDA to project 
them down to 60-dimensional sub-space features.  We re-
trained the “+P2-SAD” system with these new features. This 
re-trained system is denoted as “+MS-MLP” in Table 2.  
Comparing these two systems, we can see that the use of the 
“MS-MLP” features improved the LID performance 
significantly – about 20-30% relatively on both the “10s” and 
“30s” test conditions.  

Table 2: LID performance (EER/Cavg/Pmiss_5), 
measured on the "Dev" set, of systems trained with the 

improved SAD, MLP phoneme posteriors and 
language-dependent UBMs 

System “10s” condition “3s” condition 
+20s 10.18/10.75/18.18 23.10/24.44/53.99 
+3s  9.52/10.20/16.29 21.50/22.50/49.21 
+P2-SAD 8.75/9.28/13.87 18.73/19.37/42.34 
+MS-MLP 6.14/6.75/7.47 14.94/15.58/31.31 
+LDUBM 4.84/5.32/4.69 12.64/13.31/24.76 

 

Table 3: LID performance (EER/Cavg/Pmiss_5), 
measured on the "Eval" set, of systems trained with 
the improved SAD, MLP phoneme posteriors and 

language-dependent UBMs 

Systems “10s” condition “3s” condition 
+20s 14.13/16.88/26.78 20.59/24.01/46.87 
+3s 12.45/16.21/22.58 19.52/22.60/43.86 
+P2-SAD 12.66/15.80/22.21 17.90/20.66/40.55 
+MS-MLP 10.09/13.63/16.82 15.40/17.32/28.68 
+LDUBM 8.60/12.55/12.07 12.76/14.91/25.68 

 

4.4. Training language dependent I-vectors 

The universal background model (UBM) used for I-vector 
estimation is usually trained with data from all classes, such as 
speakers and languages,  and then the estimated I-vectors tend 
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to represent variations from each class to the UBM. In our LID 
training there are 6 classes – 5 target languages and the non-
target languages.  If we train the UBM with data only from 
one language, the estimated I-vectors would tend to reflect the 
variations from the language to the other languages. We 
expected the I-vectors estimated with the language-dependent 
UBM (LDUBM) would bring complementary information to 
each other when we use them together.   
    Motivated by this idea, for each of the 6 language classes 
we train one set of I-vectors with its LDUBM. Then for each 
set of the I-vectors we trained one NN LID classifier.  During 
the LID testing, we combined the posteriors from the 6 NN 
classifiers by taking the geometric mean as the final LID 
outputs. Each set of the I-vectors and its corresponding NN 
classifier were trained in the same way as the “+MS-MLP” 
system was trained. We use “+LDUBM” to denote this 
language-dependent system and its performance is shown in 
Table 2. Compared to the “+MS-MLP” system, this language-
dependent system improved the performance by 15-20% 
relative on the two test conditions. There gains are significant.  
    The performance of all the above systems measured on the 
“Eval” test set is shown in Table 3. As can be seen, the 
incremental improvements observed on the “Dev” set are also 
observed on the “Eval” set.  

5. Analysis on the MS-MLP features 
As shown in Section 4, the largest improvements came from 
the use of the MS-MLP phoneme posterior features. As 
described before, the MLP used to generate the phoneme 
posterior features was trained with the RATS KWS Levantine 
Arabic data, which we thought possibly had some overlaps 
with the Levantine Arabic data included in our “Dev” set (it is 
non-trivial to identify the overlaps due to the inconsistence 
between the audio file names). To completely eliminate effects 
that could be caused by the possible data overlap, we excluded 
the Levantine Arabic language from both the LID training and 
test. Hence, all our following analysis experiments were set up 
to do LID on the 4 remaining target plus the 10 non-target 
languages. 

We first re-trained the “+P2-SAD” and “+MS-MLP” 
systems with Levantine language excluded. They are denoted 
as “PLP” and “PLP+MS-MLP” in Table 4 (the 2nd and 4th 
rows), respectively. Comparing these two systems, we can see 
that the use of the “MS-MLP” feature produced similar gains 
as observed before (“+P2-SAD” vs. “+MS-MLP”). This 
confirms that the gains from the “MS-MLP” feature did not 
result from the data overlap on the Levantine language. 

Next, we checked if the “MS-MLP” feature itself out-
performs the regular PLP feature. We re-trained the “PLP” 
system by replacing the PLP with the “MS-MLP” feature.  As 
we did for the PLP feature, we tried different HLDA 
configurations and found that the HLDA projecting 3 
concatenated “MS-MLP” frames down to 60-dimension 
features produced the best performance. This system is 
denoted as “MS-MLP” in Table 4 (the 3rd row). Compared to 
the “PLP” system, it produced the similar performance. So the 
“MS-MLP” feature itself did not out-perform the PLP feature.  

Lastly, we tried to verify if the MS feature helped 
generating better quality of phoneme posterior features, which 
resulted in the LID gains.  As described before, the MS feature 
was only used in the training of the MLP that generated the 
phoneme posteriors.  Therefore, we re-generated the phoneme 

posterior features, but replacing the MS feature with the 
single-stream FDLP feature and the regular PLP feature in the 
MLP training step, respectively. We denoted these two new 
sets of phoneme posterior features as “FDLP-MLP” and “PLP-
MLP”.  We then re-trained the “MS-MLP” system with 
replacing the “MS-MLP” feature with the “FDLP-MLP” and 
“PLP-MLP” features, respectively. These two systems are 
denoted as “PLP+FDLP-MLP” and “PLP+PLP-MLP” in 
Table 4 (the 5th and 6th rows). As can be seen, these two 
systems produced similar performance as the “PLP+MS-PLP” 
system did. This indicates the MS front-end did not 
outperform other front-ends in the MLP posterior feature 
generation.    

Table 4: LID performance (EER/Cavg), measured on 
the "Dev" set, for systems trained with different MLP 

phoneme posteriors 

Features “10s” condition “3s” condition 

PLP 8.99/9.38 17.82/18.37 

MS-MLP 8.65/9.20 17.86/18.40 

PLP + MS-MLP 7.01/7.25 15.47/15.90 

PLP + FDLP-MLP 7.05/7.28 16.00/16.40 

PLP + PLP-MLP 6.95/7.21 14.75/15.02 

 
From the above analyses we can conclude that the MLP 

phoneme posterior features themselves do not outperform the 
regular PLP feature in the training of the LID system. But, 
together with the PLP feature, the MLP features always 
improved the LID performance, no matter what cepstral 
features are used to train the MLPs. 

6. Conclusions 
We have presented the work we conducted for improving our 
LID system for the RATS Phase-2 evaluation. We had 
improved our speech activity detection, feature extraction and 
LID modeling.  The improved SAD helped improving our LID 
system performance by about 10% relative, the use of the 
MLP phoneme posterior features improved the LID 
performance by 20-30% relative, and the language-dependent 
system trained with the LDUBMs improved the performance 
by about 20% relative.  
    The largest improvement came from the use of the MLP 
posterior features. Our further analyses on the MLP feature 
revealed that the improvements were due to the 
complementary information the MLP features carry in and the 
choice of the front-end used to train the MLP was not crucial. 
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