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Abstract

In this paper we evaluate different features for speech activity
detection (SAD). Several signal processing techniques are used
to derive acoustic features that capture attributes of speech use-
ful in differentiating speech segments in noise. The acoustic
features include short-term spectral features, long-term modula-
tion features both derived using Frequency Domain Linear Pre-
diction (FDLP), and joint spectro-temporal features extracted
using 2D filters on a cortical representation of speech. Poste-
riors of speech and non-speech from a trained multi-layer per-
ceptron are also used as data-driven features for this task. These
feature extraction techniques form part of an elaborate feature
extraction front-end where information spanning several hun-
dreds of milliseconds of the signal are used along with het-
eroscedastic linear discriminant analysis for dimensionality re-
duction. Processed feature outputs from the proposed front-end
are used to train SAD systems based on Gaussian mixture mod-
els for processing of speech from multiple languages transmit-
ted over noisy radio communication channels under the ongo-
ing DARPA Robust Automatic Transcription of Speech (RATS)
program. The proposed front-end performs significantly bet-
ter than standard acoustic feature extraction techniques in these
noisy conditions.
Index Terms: Speech Activity Detection, Features for SAD

1. Introduction
Speech activity detection (SAD) is the first step in most speech
processing applications like speech recognition, speech coding
and speaker verification. This module is an important compo-
nent that helps subsequent processing blocks focus resources on
the speech parts of the signal. In each of these applications, sev-
eral approaches have been used to build reliable SAD modules.
These techniques are usually variants of decision rules based on
features from the audio signal like signal energy [1], pitch [2],
zero crossing rate [3] or higher order statistics in the LPC resid-
ual domain [4]. Acoustic features have also been used to train
multi-layer perceptrons (MLPs) [5] and hidden Markov mod-
els (HMMs) [6] to differentiate between speech and non-speech
classes. All these approaches in essence focus on characteristic
attributes of speech which differentiate it from other acoustic
events that can appear in the signal.

The research presented in this paper was funded by the DARPA
RATS program under D10PC20015. The views expressed are those
of the author(s) and do not reflect the official policy or position of the
Department of Defense or the U.S. Government. Approved for Public
Release, Distribution Unlimited.

−32 −2 2 32
Rate (Hz)

8

0.5

2

S
ca

le
 (

C
yc

le
/O

ct
av

e)

Figure 1:Spectro-temporal modulations of speech derived from
clean TIMIT utterances. Separate positive and negative tempo-
ral modulations are used to differentiate sweep directions (up-
ward or downward).

Speech is a sequence of consonants and vowels, non-
harmonic and harmonic sounds with natural silences between
them. This makes speech a complex signal with a broad range
of spectro-temporal modulations (Fig. 1). Important temporal
modulations of speech lie in the 0-20 Hz range, with a peak
around 4 Hz. Spectral modulations, on the other hand, span a
range between 0-6 cycle/octave. While pitch or voicing intro-
duces modulations in the 2-6 cycle/octave range, modulations
less than 2 cycle/octave reflect formant information. As with
other pattern recognition tasks, an important step in SAD is to
represent speech using features that capture these distinct prop-
erties while also being robust to distortions under various noisy
conditions.

In this paper we investigate different kinds of acoustic fea-
tures that capture information based on these modulation prop-
erties of speech. These features are generated using different
signal processing techniques but can be broadly categorized by
the kinds of modulations they capture as -

(a) Short-term spectral features extracted from power spec-
tral estimates in short analysis windows (10-30 ms) of the
speech signal,

(b) Long-term modulation frequency components estimated in
long analysis windows spanning few hundreds of millisec-
onds from sub-band envelopes of speech, and

(c) Joint spectro-temporal features derived using 2D selective
filters tuned to different rate and scales of the input spectro-
gram.

In addition to these acoustic features, we also evaluate data-
driven features derived using multi-layer perceptrons trained on
large amounts of data. Posteriors of speech/non-speech classes
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Figure 2: Short-term spectral and long-term modulation fea-
tures for SAD derived using FDLP

estimated by these networks are used as features similar to
acoustic features.

Each of these features is evaluated in terms of SAD on
recordings from multiple languages, using a Gaussian mixture
model (GMM) based back-end SAD system. The audio data
for the DARPA RATS program is collected under both con-
trolled and uncontrolled field conditions over highly degraded,
weak and/or noisy communication channels making the SAD
task very challenging [7]. The rest of the paper is organized
as follows. Section 2 describes the different feature extraction
techniques we employ. Section 3 talks about the GMM based
speech/non-speech (S/NS) acoustic models we train on these
features. These models are trained after the features have been
pre-processed for better classification. S/NS scores are then
smoothed before a threshold based decision module generates
the final speech and non-speech timing intervals. Section 4 dis-
cusses our experiments and results. The paper concludes with a
discussion in Section 5.

2. Features for SAD
We use two different acoustic processing techniques to derive
features for SAD. The first technique uses an autoregressive
(AR) model to representing the long-term amplitude modula-
tions (AM) of speech. Short-term spectral features and long-
term modulation frequency features are derived from this repre-
sentation. The second approach uses a bank of modulation se-
lective filters at the output of a computational auditory model.
Joint spectro-temporal features are extracted from this represen-
tation.

2.1. Frequency Domain Linear Prediction (FDLP)

FDLP is an efficient technique for auto regressive (AR) mod-
eling of temporal envelopes of a signal [8]. The magnitude re-
sponse of the all pole filter approximates the Hilbert envelope
of the signal in a manner similar to the approximation of the
power spectrum of the signal using time domain linear predic-
tion (TDLP). In this approach, we first apply the discrete cosine
transform (DCT) on long segments of speech to obtain a real
valued spectral representation of the signal. The DCT trans-

form of the signal is decomposed using critical-band-sized win-
dows. Linear prediction is performed on each sub-band DCT
signal to obtain a parametric model of its temporal envelope.
We compute a spectrogram of speech by stacking the individual
sub-band temporal trajectories derived using FDLP.

Short-term spectral features are derived from sub-band tem-
poral envelopes, by integrating the envelopes in short term
frames (of the order of 25 ms with a shift of 10 ms) [9]. These
short term sub-band energies are then converted into 15 cepstral
features. To extract long-term modulation frequency features,
we first compress the sub-band temporal envelopes statically us-
ing the logarithmic function and dynamically with an adaptation
circuit consisting of five consecutive nonlinear adaptation loops.
The compressed temporal envelopes are then transformed using
the Discrete Cosine Transform (DCT) in long term windows
(200 ms long, with a shift of 10 ms). We use 10 modulation fre-
quency components from each cosine transform, yielding mod-
ulation spectrum in the 0-35 Hz range with a resolution of 5 Hz
[9]. Fig. 2 is a schematic representation of how we derive short
and long-term features using FDLP.

2.2. Cortical Representations of Speech

Cortical representations of speech are derived using a two stage
computational auditory model based on neurophysiological in-
vestigations of various stages of the human auditory system
[10]. The first stage which models the cochlear filter bank,
hair cell and lateral inhibitory networks, transforms the acous-
tic signal into an auditory spectrogram representation. The
second stage analyzes this spectrogram to estimate the con-
tent of its spectral (scale) and temporal (rate) modulations us-
ing a bank of 2D modulation selective filters. These filters
mimic the behavior of neurons in the primary auditory cortex.
Mathematically these filtering operations are equivalent to two-
dimensional wavelet transforms of the auditory spectrogram,
with wavelets resembling 2D Gabor functions. For our exper-
iments we use a bank of directional selective filters tuned to
different rates and scales, with both symmetric and asymmetric
shapes.

The output of the auditory model is a multidimensional ar-
ray with modulation components presented along four dimen-
sions of time, frequency, rate, and scale. For our current exper-
iments, the time axis of absolute values is averaged over a 250
ms sliding time window resulting in a three mode tensor for
each time window. We finally use a tensor-PCA dimensionality
reduction technique [11] to reduce the feature dimensionality
for each time window independently in each subspace to a total
of 140 dimensions.

2.3. Data-driven Features for SAD

The acoustic features described above explicitly incorporate in-
formation present in different kinds of spectro-temporal mod-
ulations to differentiate between speech and other acoustic
events. In a different approach, we train MLPs on large amounts
of data to differentiate between two classes - speech versus non-
speech. Instead of using these models directly to produce S/NS
decisions, the trained models are used as a data-driven front-end
to derive features for SAD.

The proposed front-end has a multi-stream architecture
with several levels of MLPs. The motivation behind this multi-
stream front-end is to use parallel streams of data that carry
complementary or redundant information while at the same
time degrading differently in noisy environments. We use 5
feature streams that include sub-band energies corresponding
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Figure 3:Cortical multi-scale representation of speech - The auditory spectrogram is analyzed by a bank of spectro-temporal modula-
tion selective filters to produce spectro-temporal representations of speech. The filters have different temporal and spectral selectivity,
with different symmetry and up-down sweep.

to different frequency ranges of the spectrum along with two
kinds of temporal modulations.

The MLPs are trained on close to 660 hours of audio from
the RATS development corpus [14] using LDC provided S/NS
annotations. Sub-band energies of speech are derived using the
FDLP technique with 45 bark scale filters. Separate MLPs are
trained on 3 sets of sub-band energies corresponding to high,
mid and low frequency ranges. Each 15-dimensional feature
vector is also appended with contextual information from 50
adjacent left and right frames. Fast and slow temporal modula-
tions correspond to the the first and last 5 long-term modulation
frequency features also derived using FDLP respectively. Out-
puts from these 5 sub-systems are then fused by a merger MLP
at the second level to derive the final S/NS posterior features.
These features are derived from the pre-softmax outputs of the
final layer.

3. Acoustic Models for SAD

Speech activity detection is carried out on the proposed fea-
tures in three main steps. In the first step, the input frame-level
features are projected to a lower-dimensional space. The re-
duced features are then used to compute per-frame log like-
lihood scores with respect to speech and non-speech classes,
each class being represented separately by a GMM. The frame-
level log likelihood scores are mapped to S/NS classification
decisions to produce final segmentation outputs in the last step.
Each of these steps are described in detail in the next sections.

3.1. Feature projection to lower dimensions

With both the FDLP and cortical feature extraction tech-
niques producing high dimensional feature vectors per frame
of speech, it is necessary to apply a dimensionality reduction
scheme to ensure robust acoustic modeling in subsequent steps.
Linear Discriminant Analysis (LDA), although very popular in
many classification tasks, is not very appealing for speech/non-
speech classification since it can project to only one dimension.
This is due to its use of a between-class scatter matrix of rank
N-1, where N is the number of classes (in our case, N=2). Het-
eroscedastic linear discriminant analysis (HLDA) [12], on the
other hand, is better suited for our purposes, as its output di-
mensionality is not constrained by the number of classes and
can accommodate Gaussian Mixture Models. Since HLDA is a
maximum likelihood method, it is not guaranteed to find an op-
timal projection in terms of increasing class separability. How-
ever in practice we find consistent gains in SAD accuracy from
combining various types of features using this technique.

3.2. Speech/Non-speech likelihood computation

During training, we pool all the feature vectors generated by
HLDA into two classes, speech and non-speech, and estimate a
GMM for each class using standard ML re-estimation methods.
We do this starting with a single Gaussian component for each
class. The means of the single component are then randomly
perturbed to increase the number of components to two. This
is followed by few iterations of the expectation-maximization
(EM) algorithm to re-estimate the new means and variances.
The interleaved Gaussian splitting and EM training procedure
is continued until we reach the desired number of mixture com-
ponents.

During testing, for each frame of speech we use its HLDA
representation to calculate log likelihood scores with respect to
each of the two GMMs models. The two scores are then sub-
tracted to form a per-frame S/NS log likelihood ratio.

3.3. Speech/Non-Speech classification

The final classification is done by computing the average per-
frame log likelihood ratio, based on a sliding window of 81
frames. The resulting scores are then compared against a fixed
threshold. Frames with scores above the threshold are classified
as speech, and the rest as non-speech.

4. Experiments
The features described in Section 2 are evaluated in terms of
speech activity detection (SAD) accuracy on noisy radio com-
munications audio provided by the Linguistic Data Consor-
tium (LDC) for the DARPA RATS program [14]. Most of the
RATS data released for SAD were obtained by retransmitting
existing audio collections - such as the DARPA EARS Levan-
tine/English Fisher conversational telephone speech (CTS) cor-
pus - over eight radio channels, labeled A through H. covering
a wide range of radio channel transmission effects [7].

The development corpus used in our experiments consisted
of 11 hours of audio from the Arabic Levantine and English
Fisher CTS corpus, retransmitted over the eight channels. The
training corpus consisted of 73 hours of audio (62 hours from
the Fisher collection, and 11 from new RATS collection). Al-
though the entire data was also retransmitted over eight chan-
nels, we selected a channel at random for each audio file to
reduce the turnaround time for our experiments. In the ini-
tial release of the above LDC RATS corpora several audio files
from channel F were unusable, so we excluded all data from
that channel from both training and development.

We trained SAD models, as described in Section 3, for



Dimensionality Equal Error Rate (%) on different channels
#Dims. #Frame Total

Features /Frame Context #Dims. A B C D E G H All

PLP 15 31 465 3.55 3.00 5.03 2.51 2.75 3.48 2.343.34
FDLPS 15 31 465 3.42 3.10 4.46 2.42 2.78 3.40 2.293.20
FDLPM 340 1 340 3.88 3.80 4.12 3.26 3.52 3.60 2.514.15
MLP 2 31 62 3.05 2.96 3.76 2.20 2.71 3.35 2.103.17
CORT 140 1 140 3.81 3.33 4.02 2.46 3.41 3.46 2.203.27
PLP+MLP 17 31 527 3.10 2.84 3.20 2.25 2.63 2.96 2.072.84
FDLPS+MLP 17 31 527 3.15 2.94 3.04 2.17 2.67 2.89 1.932.82
FDLPM+MLP 402 1 402 3.02 2.90 3.73 2.26 2.84 2.42 1.892.88
PLP+CORT 605 1 605 3.35 3.08 3.21 2.29 2.71 2.62 1.972.85

Table 1: Equal Error Rate (%) on different channels using differentacoustic features and combinations

each type of features, as well as for certain feature combina-
tions. In each case, HLDA was used to reduce dimensionality
prior to GMM training. Table 1 shows the dimensionality of
the original space, prior to the application of HLDA, for each
feature type used. We explicitly use a context of 31 frames for
short-term features. In all cases, the output dimensionality of
HLDA was set to 45. A single Gaussian was used to repre-
sent each of the two classes (speech, non-speech) during HLDA
estimation. After the dimensionality reduction, we trained 512-
component GMMs for S/NS classification. The number of con-
textual frames, HLDA dimensionality, and number of GMM
components were optimized using separate experiments [13].

The derived SAD models were evaluated on the develop-
ment set in terms of equal error rate (EER%), which is the op-
erating point at which the falsely rejected speech rate (proba-
bility of missed speech) is equal to the falsely accepted non-
speech rate (probability of false alarm). The results are shown
in Table 1 for conventional features (PLP), short-term features
derived using FDLP (FDLPS), long-term modulation features
(FDLPM), joint spectro-temporal cortical features (CORT), and
data-driven features (MLP). Although each of the feature sets
have varying performance in each of the individual noisy chan-
nels, they are comparable to each other in terms of overall SAD
performance. In a second set of experiments we combine fea-
tures which capture various kinds of information about speech.
We observe close to 15% relative improvement for two kinds of
feature combinations - combination of acoustic and data-driven
features (for example FDLPS+MLP), and the combination of
different acoustic features (PLP+CORT). We draw the follow-
ing conclusions from these experiments -
1. Contextual information needs to be captured for good S/NS
discrimination. While we provide this explicitly in short-term
features (31 frames of speech), long-term modulation features
implicitly capture this information.
2. It is useful to use dimensionality reducing techniques, such
as HLDA, to project high-dimensional features to lower dimen-
sions before modeling.
3. MLP based models, which are traditionally used to directly
produce S/NS decisions, can be used as data-driven front-ends
to produce complementary data-driven features.
4. Different acoustic features capture complementary attributes
leading to further performance improvements when combined.

5. Conclusions
We have evaluated different kinds of acoustic and data-driven
features in terms of SAD on a very challenging audio corpus.
The proposed features are first pre-processed by appending suf-

ficient context information before projecting them to lower di-
mensions. These features provide comparable performances
when used individually. Significant improvements are obtained
when features which capture different spectro-temporal proper-
ties and data-driven attributes are combined together.
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