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ABSTRACT e Incorporating side-information into the system seem t@hel

. . . L but we will need to do more analysis.
This paper describes the speaker identification (SID) systevel-

oped by the Patrol team for the first phase of the DARPA RATS ~ The paper is organized as follows: Section 2 describes die- tr
(Robust Automatic Transcription of Speech) program, wiiebks N, development, and evaluation data sets. Section 3iespiae
to advance state of the art detection capabilities on audio highly ~ Systéms components. Section 4 covers the fusion and didifra
degraded communication channels. Section 5 summarizes the results of individual systems #sawéu-

) o ] sion, and section 6 ends the paper with discussion and ookl
Index Terms— speaker identification, noisy speech.

2. DATA
1. INTRODUCTION
The Linguistic Data Consortium (LDC) provided the trainiagd
The goal of the RATS program is to create technology capable otest data for the RATS participants. The audio recordinggevse-
accurately determining speech activity regions, detgdtgy words,  |ected from existing and new data sources as follows:

and identifying language and speakers, in highly degradeshk . . . .
and/or noisy communication channels. The RATS test anditvgi * .NIhST SRE 2004 (English, Arabic, Chinese, Russian, Span-
data are collected under both controlled and uncontrolkdd fion- ish)

ditions. e RATS-LDC (Levantine Arabic, Farsi)

The goal of this paper is to describe our speaker identitioati e RATS-Appen (Levantine Arabic, Farsi, Pashto, Dari, Urdu)
system submitted for the first phase of the Evaluation omgahi o CallFriend Farsi
within this project. e Fisher Arabic Levantine

We should mention these points: e Fisher English

e Describe the nature of the data e NIST LRE (various languages)

e Other than military applications of RATS system ... air/alav All recordings were retransmitted through 8 different yaism-

communication, police, rescue services etc.. munication channels, labeled by the letters A through H [&.

. ) “push-to-talk” (PTT) transmission protocol was used in @ian-
¢ A need to revisit other than MFCC feature extraction for suchpg|g except G. PTT states produce some regions where neuttip-

data transmission (NT) segments may occur. As a result, the athmfun
e VAD becomes much harder and more important part of theusable audio goes down somewhat after retransmission.
system It should be noted that among the data sources listed abolye, o

. the first three were annotated with speaker labels. Data frem
» Fusion of several front-ends and VAD may lead not only 10 oiher sources was used to train universal background meutels
better performance, but most importantly also to @ more 104 yector extractors. We used the “dev” subset of the RATSELD
bust system. and RATS-Appen corporato define speaker enrollment and testing
This work was partly supported by the DARPA RATS Program unde sa_lmples. The rest of the RATS-LDC and RATS-Appen d.ata‘ along
Contract No. D10PC20015, by Technology Agency of the CzeepuR- with the Nl_ST SRE 2004 set was HSEd for s"peaker mod_elln_g.
lic grant No. TA01011328, and by IT4Innovations Centre ofc&lience There is also a separate blind “progress” test set, whickes to
CZ.1.05/1.1.00/02.0070. The views expressed are thodeecduthors and measure year-to-year progress on the RATS SID task. Thegssg
do not reflect the official policy or position of the Departrhef Defense or
the U.S. Government. 1LDC catalog ids: LDC2012E49, LDC2012E63, LDC2012E69.




set consists of speakers from the 5 target languages (liveafta-

bic, Farsi, Pashto, Dari, Urdu). Each speaker has 10 reupisks-
sions, retransmitted over the 8 noisy channels as descabede.

For each speaker, 6 of the sessions are used for enrolimert fam

testing, randomly sampled from the noisy channels. Therpsxy
set defines multiple testing conditions, depending on theusm
of speech present in enrollment and testing samples. Thanfol
ing test-enroll conditions are evaluated (numbers indicadminal

amount of speech in seconds): 120-120, 30-30, 30-10, 30-301
10-3, 3-10, 3-3.

Only recordings from the 120s condition were released fintr
ing and development. We therefore had to construct our owalde
opment samples for the shorter durations from the 120s dild&
based on BUT'’s voice activity detection (VAD).

3. SYSTEM COMPONENTS

In this section we review the components of the systems weldev

oped for the RATS SID task. These are organized into voideigct
detection, acoustic/prosodic front-ends, and modeling.

3.1. Voice activity detection

We experimented with three different types of voice acyivletec-
tors, described below.

NN-based VAD (VAD1): Voice activity detection (BUT VAD)
is performed by Neural Network with input consisting of a ¢ko

by minimal statistics noise estimation (MSNE) based metioae-
move relatively stationary noise [6]. We used a modified ioerf
MSNE in order to fit the RATS data characteristics. The finaesgh
signal is denoised by setting the high-energy noise segtoergro.
VAD is conducted on the denoised data. Pitch informationlde a
used in this step on the assumption that all speech segnfenikls
contain speech with pitch. The a-posteriori SNR weightegkgn
difference measure is applied now to the voiced speech segrte
make voice activity detection.

3.2. Acoustic Front-ends

In order to improve robustness to noise, we investigateduar
types of acoustic front-ends, described below.

MFCC: This front-end operates on standard Mel-frequency
Cepstrum Coefficients (MFCC), extracted using a 25ms Hammin
window. We extract 19 MFCCs together with log-energy every
10ms. We augment the MFCC with delta and double delta co-
efficients calculated using a 5 frame window, which results i
60-dimensional feature vectors. These are subjected toiréea
warping [7] using a 3s sliding window before removing thesde.

PLP: We bandlimit the audio to the 125-3750Hz range and ex-
tract 14 PLP coefficients plus normalized energy using a 23am-
ming window with a 10ms frame shift. We augment the PLPs with
their first and second derivatives, yielding 45-dimensidieature
vectors, which are then subjected to feature warping usidg sid-

of Mel filter outputs with context of 300ms. The NN has 18 out- INg window over the detected speech regions.

puts: 9 for speech and 9 for non-speech, each corresponulioget
of the channels (source plus 8 re-transmitted). HMM witheXbi
decoding is used to smooth out and merge the outputs to speech

CFCC: We use auditory motivated features which simulate the
signal processing functions in cochlea [8]. We use 24 Gamoneat
filters with frequency band 300-3400. The resulting outpufil

non-speech regions. This NN is trained on RATS data defined fotered through a low-pass filter with cutoff frequency 20Hastead

the speech activity detection (SAD) task [2].
GMM-based VAD (VAD2): This system is a variant of the

of using a fixed length window, we are using a variable lengiti w
dow for different frequency bands. The higher the frequetiog

GMM-based VAD described in [2]. The audio bandwidth is set toshorter the window. This avoids the high frequency inforiorabe-

125-3750Hz. Normalized energy and 14 perceptual lineadipre
tive (PLP) coefficients are first extracted for every 25mawaitshift
of 10ms. RASTA-based [3] cepstral mean normalization idiegp
to the PLP coefficients. The 15-dimensional feature vedt@aah
frame is augmented with the corresponding features fronptee
ceding 7 and following 7 context frames, and then projectaard
to 45 dimensions using heteroscedastic linear discrintiaaaly-

sis (HLDA). Two 2048-component GMMs (one for speech and one

for non-speech) were trained on the resulting feature spades
GMMs were initially trained using maximum likelihood esttion,
and then reestimated discriminativaly so as to maximizenthtual
information between the training observations and thespeetive
speech/non-speech labels.

Unsupervised VAD (VAD3) and denoising: Speech signals
in RATS are corrupted by both relatively stationary noisenasl
as burst-like noise. Due to the very different charactiessof the
two types of noise, they should be dealt with separately. r&he

fore, we investigated a two-pass segment-based methodAbr V

and denoising. In the first pass, the speech signal is firstditt by
a first-order high-pass filter with a cutoff frequency of 60.Hhen
high energy segments are detected by using a-posterioralsig-
noise-ratio (SNR) weighted energy difference measurelf4he a-
posteriori SNR weighted energy distance of two consectitarmes
is larger than a predefined threshold, a high-energy frametected.
Within a high energy segment, if no pitch is found, the segnien
considered as noise. In this work, pitch detection is redlizy using
Praat software [5]. In the second pass, the speech signah@sed

ing smoothed out by a long window duration. The window length
is proportional to center frequency of the Gammaton filtdr [&e
apply the hamming window, take the logarithm, and apply réisc
cosine transform (DCT) on the resulting window with 20 babiext

we remove silence frames according to VAD and after that vpdyap
feature warping with a window of 3s. Afterwards, we add delad
double deltas, resulting in a 60-dimensional feature wecto

FDLP: Auto-regressive (AR) modeling is an efficient way of
approximating the power spectrum of a signal. It emphasizes
peaks of the spectrum, which are more salient. Frequencyatiom
linear prediction (FDLP) extends this idea to model the tdomain
Hilbert envelope of the signal [9, 10]. The emphasis in tlisecis

on temporal peaks, which are more robust to noise. In thisoaob,

we first apply DCT of long segments (10 seconds) of speech sig-
nal [11]. The full-band DCT is windowed into 96 linear subabla in
the frequency range of 125-3800 Hz. Linear prediction isqared

on each sub-band DCT samples to obtain parametric sub-band e
velopes. The parametric sub-band envelopes are stackedntoaf
two-dimensional time-frequency representation (simiaspectro-
gram) of the input signal. This two-dimensional represgotais
decimated to 100 Hz sampling rate. The output of decimatiages
provides an estimate of the power spectrum of the signakistiort-
term frame level. These linearly spaced power spectraheséis are
then warped to mel axis by critical band integration [12]. rigitag

is done using 3s sliding window. The short-term power spéets-
timates are converted to 60-dimensional features comigi2d cep-
stral coefficients along with their first and second derxesti



PLP2: The output power spectral estimates from the criticalsented as a diagonal covariance Gaussian mixture model (GMM

band integration stage of FDLP, are inverse Fourier transéo to
obtain an autocorrelation sequence [13]. This autocdroglese-
guence is used for time-domain linear prediction (TDLPjngsa
19th-order model. The TDLP provides an all-pole approxiorat
of the short-term spectrum. The output TDLP parameters ame ¢
verted to 20 cepstral coefficients using cepstral recursiDeltas
and double-deltas are appended to generate a 60-dimeh&ana
ture vector at each time frame. Before removing the silefezure
vectors are warped using a 3s sliding window [12].

Cortical Features: The cortical representation of speech is de-

rived from a two-stage computational auditory model [14hieh
is based on neurophysiological investigations of the hueatitory
system. The output of the auditory model is a multidimensian-
ray of temporal and spectral modulations along time, freqyerate,
and scale. It is averaged over a 250 ms sliding window. Werfrst
duce the high dimensionality of cortical features usingaalitronal
principal component analysis (PCA) to 19 features. Then ave-c
pute and concatenate the delta and double-delta featupgedace
a 57-dimensional vector for each frame. Feature warpingiied
next, using a 3s sliding window over the speech segmentstdete

Variance flooring was used in each iteration of EM algoritrumirg
the UBM training. The UBMs for ivec1 and ivec2 had 2048 mixtur
components, while ivec3 had 1024.

i-vector extraction: The UBMs were used to generate zero and
first order statistics for training the i-vector extractfit9, 20]. Sub-
systems ivecl and ivec2 output 600-dimensional i-vectefs)e
sub-system ivec3 outputs 500-dimensional i-vectors.

4. SYSTEM CALIBRATION AND COMBINATION

We used two different approaches to our fusion and calidmatrirst
approach is a classical and well-tested fusion using liogisgres-
sion and only the scores of the subsystems as inputs. Thadeco
one uses a support vector machine (SVM) with linear kernéltha
inputs are scores of the subsystems as well as other sideviafion
which is known or can be automatically extracted at test time
Because of the lack of an independent held-out calibrataia d

set, we used the technique called jack-knifing and we dividedle-
velopment database into two independent parts on whichaireetl
the parameters. Parameters trained on first part were apjolithe

by VAD. The resulting features have been shown to have some rasecond part and vice versa. When we finished the system ghevelo

bustness to additive noise and reverberation in the caseewhe
speaker models are trained from clean data [15].

3.3. Prosodic Front-end

ment, we used all of the development data for the fusion witho

jack-knifing.

4.1. Logistic Regression Fusion

The prosodic system is trained over FO and energy contoutiseas \We use the freely available Bosaris toolkit [21], which po®s a

preliminary features. The FO and energy of the signal araetad

logistic regression solution for the calibration and fusi8oth cali-

using 10ms frames using the Snack toolkit [16]. The same VAD abration and fusion are based on the following mapping:

in VADL1 is used. The FO and energy contours are then estimesed

ing a fixed length window 0200ms with 50ms shift. The contours
are estimated using discrete cosine transform and thesfeseffi-
cients are used as the representative of the correspondimgurs
in each window. Al3-dimensional feature vectoé 0 coefficients,
6 energy coefficients and number of the voiced frames) is tisex u
to train a gender independez@48-component UBM using diagonal
covariance matrix. A 300-dimensional total variabilitybspace is
then trained for extraction of the ivectors [17].

3.4. Modeling

Features resulting from the various combinations of voictviy
detectors and acoustic/prosodic front-ends were useditoitvector
based SID systems. Three types of i-vector sub-systemsuges

N
li=a+ Zbism
i—1

wherel, is the fused (ifV > 1) and calibrated output log-likelihood-
ratio for trial¢; IV is the number of subsystems to be fused\(it= 1,
then the result is just calibrationy;; is the score of subsysteirfor
trial ¢. The parameters to be optimized are the scalar offsetd the
scalar combination weightls. These are optimized using logistic
regression, which minimizes the cross-entropy betweerstoees
and thesupervised calibration database

4.2. SVM Fusion

We also investigated the use of an SVM for fusion. Besidesnitfie
vidual SID system scores, the SVM classifier can also takéharo

developed at BUT, MIT, and BBN. In the rest of the paper we will measured features of the input audio, such as channel idegéh

be referring to these sub-systems as ivecl, ivec2, and,ivesfiec-
tively.

Common framework for training and scoring: A universal
background model (UBM) is first trained, and first and secamigio
statistics are extracted for every signal to be processée. statis-
tics from the training data are then used to train i-vectdrastor
which is then applied on all enrollment and test sessionsatust
form them into fixed-length low dimensional i-vectors. Alllsys-
tems included in our submission use the i-vector/PLDA fraomi
for modeling. The i-vectors are transformed using lineacdmi-
nant analysis (LDA) and normalized to unit length. Log-likeod
ratios for each trial are estimated using probabilistiedindiscrimi-

etc. We experimented with different types of SVMs and we tbun
the best results when we used ROC area as the objectiveduancti
to maximize. ROC area is a performance measure defined as the
fraction of pairs of positive and negative examples tharanged in
correct order:

num. swapped pairs
num. pos.x Num. neg.

ROC Area=1 —

A swapped pair is one where the positive sample has a lower
score than the negative sample. This objective functiopiisrozed
by treating the problem as a classification problem of allitpes
and negative pairs. The input to the classifier is a pair ofpntive

nant abalysis (PLDA) [18]. The LDA transform and PLDA parame sample and one negative sample. The output of the classifieifi

ters are learned from i-vectors extracted from the trairata.

the positive sample’s score is higher, and it is -1 if the tiggaam-

Universal background model: Each sub-system used its own ple’s score is higher. The target output is always 1. Joashig]
gender-independent universal background model (UBM)rerep shows that there is an efficient way to perform such optinonat



We experimented with different SID systems and features-as i
put to the SVM. The following “side information” features meecon- [ [FEA [ VAD [ SubSys| FA [ Miss [ EER]
sidered: gender id; language of trial (Pashto, Levantitieer; test -
channel id (A-H); and number of times the test channel was see CFCC VAD1 !vecl 24 6.8 5.3
in enrollment (0, 1, 2+ times). Note that the language id was p FDLP VAD1 !vecl 341 89 6.1
vided to the systems at enrollment/test time. All othertezt were ’;’AII_:SZC xﬁgi :xggi gg ;i gg

automatically extracted from the audio. PROSO| VADL veel | 226 413 | 187
CORT | VAD2 ivec3 | 34 | 88 | 6.1
MFCC | VAD3 ivec2 | 28 | 7.7 | 56
PLP VAD2 ivec3 | 44 | 108 | 6.7
MFCC | VADY’ ivec2 | 3.2 | 84 | 59

5. RESULTS

OCOoO~NOOUITRAWNPE

During our development for the RATS Phase 1 evaluation, wi bu
several systems, differing in the VAD algorithm, acoustint-end
(one of the front-ends was prosodic), and i-vector exteactiAll  Taple 1. Subsystems using various VADs and feature front-ends.

systems were trained using the data described in Sectioni2yare  Results (%) are given on our DEV set 30-30 test-enroll comalit
evaluated on our development set in terms of equal erro(EER),

as well as in terms of the two RATS Phase 1 SID performance met-
rics, which were (a) the miss rate (Miss) at the target falagarate
of 4%; and (b) the false alarm rate (FA) at the target missobi©%.

Table 1 shows the performance of the individual systemsthuic- [Feature [ A [ B C|DJEJF]G] H |
ipated in the final fusion experiments, in terms of the aboetrics. MECC 831821 84]90]94] 741541 121
The scores were obtained by pooling trials across all 8 oklann CECC 741771781 89183/ 65|54/| 116

It can be seen that the best results are obtained using CREC fe CFcc-noB| 73| 98| 80! 88| 82166 53| 11.7
tures, VAD1, and ivecl extractor. In an earlier set of experits,

shown in the first two rows of Table 2 we found that CFCCs pro- Table 2. Comparison of MFCC and CFCC front ends. VAD1 seg-

vided superior performance across all channels, compareding  mentation, ivecl sub-system. Results (% EER) on DEV 30sicond
MFCCs. The third row in Table 2 shows the result we obtain with;jq,

CFCCs when data from channel B are excluded from the PLDA

model training. The EER on channel B increases from 7.7%8%9.

while staying about the same on all other channels. Thicatds

that although CFCCs are more robust than MFCCs, the system pe

formance is still very sensitive to new channels. | Config [ Fusion type| Sidelnfo | FA | Miss | EER |

Comparing systems 3 and 7 in Table 1 shows that the unsuper- [A LR No 1.4 ] 5.0 45
vised VAD is very competitive to the supervised NN-based WaD A SVM No 12| 45 4.3
terms of the downstream SID performance. Looking at systéms A SVM Yes 11| 4.3 4.2
and 9, we see that using the denoised audio hurts SID penfcena B LR No 1.3 | 5.0 4.5
The denoising technique in system 9 is based on the unssgpdrvi B SVM No 12| 43 4.1
VAD (VAD3). However in order to build the speaker verificatio B SVM Yes 1.0| 4.0 4.0

system, we used VAD1. This mismatch between the two VADs may
explain the degradation from the denoising technique. Table 3. System combinations. Configuration ‘A’ refers to the com-
Table 3 shows a comparison between alternative fusiorferdif pination of systems (1,3,6,7) in Table 1. Configuration ‘Bfers to

ing in the configuration (which systems get combined), algor  the combination of systems 1 through 9. Results (%) are giren
(logistic regression vs. SVM), and usage of side informmatitVe  gur DEV set 30-30 test-enroll condition.

found no benefit for using side information in LR-based fasio
while such information helps when using the SVM. The resaofts
Table 3 show that the SVM is better than LR, especially whan-co
bining a large number of systems (configuration B). Thesaltes

are confirmed on the RATS progress set, as shown in Tabledsscr [ Condition | Primary Fusion| Contrastive Fusior|
all test-enroll duration conditions. 120-120 54 4.7
30-30 8.6 8.6
6. DISCUSSION AND CONCLUSIONS 30-10 131 10.6
30-3 19.8 16.8
In this paper, we described the patrol team submission foRPA- 10-10 20.2 17.0
RATS Phase 1 speaker identification evaluation, using afidia 10-3 26.3 21.5
highly degraded communication channels. Our submittetesys 3-10 35.8 31.9
was a fusion of several sub-systems, which differ primdrilterms 33 48.3 40.7

of the features and voice activity detection. It is alreadgwn [23] ] ) ]
that fusing multiple sub-systems, which are similar in $geanod- Tabl_e 4. Results on progress set_. ‘Primary Fusion’ and ‘Contrastiv
eling and different only in terms of VAD and features helpsrte ~ Fusion’ refer to fusion configurations “A-LR” and “B-SVM" sade-
scribed in Table 3, rows 1 and 6. Results are miss rate (%)eat th
2Each column labelled A through H corresponds to one of the 8RA RATS Phase 1 target false alarm rate of 4%.
channels. Channel G is a relatively noise-free channel] asea reference
point.




prove the performance. Also, in previous work on languagatid
fication (LID) for the RATS project [24], we had observed tlat
tection accuracy was very sensitive to the VAD employed. thisr

reason we built three different VADs. The first two VADs were s

(11]

(12]

pervised, based on NN and GMM modeling. The last one is a two
pass unsupervised VAD based on denoising technique. Th#ses

show that the unsupervised VAD achieved similar perfornearmm-
pared to the supervised ones. We also used different featora-
prised by a variant of cepstral, cortical and prosodic infation. We
observed significant improvement (about 24% relative) ifREEBM
combining multiple systems using a novel SVM-based fusign-a
rithm that benefited from side information such as gendaguage,
and channel id.

In the future RATS evaluations, we will need to address tibpr
lem of making our systems more robust to the unseen chanrel.

started studying this problem in this paper where we showetbelts
of a single system by isolating one target channel from taimitrg

data. The results show that our systems are very sensitive ton-

seen channel, even when using state of the art noise-raatstrés.
The intuition is that the channel characteristics are véfgrént and
we should address this issue by developing de-noising igobs
which can “normalize” the data, or model adaptation methatle

also believe that the unsupervised VAD that we developetl bei
more robust to the unseen channel condition compared tashers
vised trained ones.
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