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ABSTRACT

This paper describes the speaker identification (SID) system devel-
oped by the Patrol team for the first phase of the DARPA RATS
(Robust Automatic Transcription of Speech) program, whichseeks
to advance state of the art detection capabilities on audio from highly
degraded communication channels.

Index Terms— speaker identification, noisy speech.

1. INTRODUCTION

The goal of the RATS program is to create technology capable of
accurately determining speech activity regions, detecting key words,
and identifying language and speakers, in highly degraded,weak
and/or noisy communication channels. The RATS test and training
data are collected under both controlled and uncontrolled field con-
ditions.

The goal of this paper is to describe our speaker identification
system submitted for the first phase of the Evaluation organized
within this project.

We should mention these points:

• Describe the nature of the data

• Other than military applications of RATS system ... air/naval
communication, police, rescue services etc..

• A need to revisit other than MFCC feature extraction for such
data

• VAD becomes much harder and more important part of the
system

• Fusion of several front-ends and VAD may lead not only to
better performance, but most importantly also to a more ro-
bust system.

This work was partly supported by the DARPA RATS Program under
Contract No. D10PC20015, by Technology Agency of the Czech Repub-
lic grant No. TA01011328, and by IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070. The views expressed are those of the authors and
do not reflect the official policy or position of the Department of Defense or
the U.S. Government.

• Incorporating side-information into the system seem to help,
but we will need to do more analysis.

The paper is organized as follows: Section 2 describes the train-
ing, development, and evaluation data sets. Section 3 explains the
systems components. Section 4 covers the fusion and calibration.
Section 5 summarizes the results of individual systems as well as fu-
sion, and section 6 ends the paper with discussion and conclusions.

2. DATA

The Linguistic Data Consortium (LDC) provided the trainingand
test data for the RATS participants. The audio recordings were se-
lected from existing and new data sources as follows:

• NIST SRE 2004 (English, Arabic, Chinese, Russian, Span-
ish)

• RATS-LDC (Levantine Arabic, Farsi)
• RATS-Appen (Levantine Arabic, Farsi, Pashto, Dari, Urdu)
• CallFriend Farsi
• Fisher Arabic Levantine
• Fisher English
• NIST LRE (various languages)

All recordings were retransmitted through 8 different noisy com-
munication channels, labeled by the letters A through H [1].A
“push-to-talk” (PTT) transmission protocol was used in allchan-
nels except G. PTT states produce some regions where multiple non-
transmission (NT) segments may occur. As a result, the amount of
usable audio goes down somewhat after retransmission.

It should be noted that among the data sources listed above, only
the first three were annotated with speaker labels. Data fromthe
other sources was used to train universal background modelsand
i-vector extractors. We used the “dev” subset of the RATS-LDC
and RATS-Appen corpora1 to define speaker enrollment and testing
samples. The rest of the RATS-LDC and RATS-Appen data, along
with the NIST SRE 2004 set was used for speaker modeling.

There is also a separate blind “progress” test set, which is used to
measure year-to-year progress on the RATS SID task. The progress

1LDC catalog ids: LDC2012E49, LDC2012E63, LDC2012E69.



set consists of speakers from the 5 target languages (Levantine Ara-
bic, Farsi, Pashto, Dari, Urdu). Each speaker has 10 recording ses-
sions, retransmitted over the 8 noisy channels as describedabove.
For each speaker, 6 of the sessions are used for enrollment and 4 for
testing, randomly sampled from the noisy channels. The progress
set defines multiple testing conditions, depending on the amount
of speech present in enrollment and testing samples. The follow-
ing test-enroll conditions are evaluated (numbers indicate nominal
amount of speech in seconds): 120-120, 30-30, 30-10, 30-3, 10-10,
10-3, 3-10, 3-3.

Only recordings from the 120s condition were released for train-
ing and development. We therefore had to construct our own devel-
opment samples for the shorter durations from the 120s audiofiles,
based on BUT’s voice activity detection (VAD).

3. SYSTEM COMPONENTS

In this section we review the components of the systems we devel-
oped for the RATS SID task. These are organized into voice activity
detection, acoustic/prosodic front-ends, and modeling.

3.1. Voice activity detection

We experimented with three different types of voice activity detec-
tors, described below.

NN-based VAD (VAD1): Voice activity detection (BUT VAD)
is performed by Neural Network with input consisting of a block
of Mel filter outputs with context of 300ms. The NN has 18 out-
puts: 9 for speech and 9 for non-speech, each corresponding to one
of the channels (source plus 8 re-transmitted). HMM with Viterbi
decoding is used to smooth out and merge the outputs to speechand
non-speech regions. This NN is trained on RATS data defined for
the speech activity detection (SAD) task [2].

GMM-based VAD (VAD2): This system is a variant of the
GMM-based VAD described in [2]. The audio bandwidth is set to
125-3750Hz. Normalized energy and 14 perceptual linear predic-
tive (PLP) coefficients are first extracted for every 25ms with a shift
of 10ms. RASTA-based [3] cepstral mean normalization is applied
to the PLP coefficients. The 15-dimensional feature vector at each
frame is augmented with the corresponding features from thepre-
ceding 7 and following 7 context frames, and then projected down
to 45 dimensions using heteroscedastic linear discriminant analy-
sis (HLDA). Two 2048-component GMMs (one for speech and one
for non-speech) were trained on the resulting feature space. The
GMMs were initially trained using maximum likelihood estimation,
and then reestimated discriminativaly so as to maximize themutual
information between the training observations and their respective
speech/non-speech labels.

Unsupervised VAD (VAD3) and denoising: Speech signals
in RATS are corrupted by both relatively stationary noise aswell
as burst-like noise. Due to the very different characteristics of the
two types of noise, they should be dealt with separately. There-
fore, we investigated a two-pass segment-based method for VAD
and denoising. In the first pass, the speech signal is first filtered by
a first-order high-pass filter with a cutoff frequency of 60 Hz. Then
high energy segments are detected by using a-posteriori signal-to-
noise-ratio (SNR) weighted energy difference measure [4].If the a-
posteriori SNR weighted energy distance of two consecutiveframes
is larger than a predefined threshold, a high-energy frame isdetected.
Within a high energy segment, if no pitch is found, the segment is
considered as noise. In this work, pitch detection is realized by using
Praat software [5]. In the second pass, the speech signal is denoised

by minimal statistics noise estimation (MSNE) based methodto re-
move relatively stationary noise [6]. We used a modified version of
MSNE in order to fit the RATS data characteristics. The final speech
signal is denoised by setting the high-energy noise segmentto zero.
VAD is conducted on the denoised data. Pitch information is also
used in this step on the assumption that all speech segments should
contain speech with pitch. The a-posteriori SNR weighted energy
difference measure is applied now to the voiced speech segments to
make voice activity detection.

3.2. Acoustic Front-ends

In order to improve robustness to noise, we investigated various
types of acoustic front-ends, described below.

MFCC: This front-end operates on standard Mel-frequency
Cepstrum Coefficients (MFCC), extracted using a 25ms Hamming
window. We extract 19 MFCCs together with log-energy every
10ms. We augment the MFCC with delta and double delta co-
efficients calculated using a 5 frame window, which results in
60-dimensional feature vectors. These are subjected to feature
warping [7] using a 3s sliding window before removing the silence.

PLP: We bandlimit the audio to the 125-3750Hz range and ex-
tract 14 PLP coefficients plus normalized energy using a 25msHam-
ming window with a 10ms frame shift. We augment the PLPs with
their first and second derivatives, yielding 45-dimensional feature
vectors, which are then subjected to feature warping using a3s slid-
ing window over the detected speech regions.

CFCC: We use auditory motivated features which simulate the
signal processing functions in cochlea [8]. We use 24 Gammatone
filters with frequency band 300-3400. The resulting output is fil-
tered through a low-pass filter with cutoff frequency 20Hz. Instead
of using a fixed length window, we are using a variable length win-
dow for different frequency bands. The higher the frequency, the
shorter the window. This avoids the high frequency information be-
ing smoothed out by a long window duration. The window length
is proportional to center frequency of the Gammaton filter [8]. We
apply the hamming window, take the logarithm, and apply discrete
cosine transform (DCT) on the resulting window with 20 basis. Next
we remove silence frames according to VAD and after that we apply
feature warping with a window of 3s. Afterwards, we add deltas and
double deltas, resulting in a 60-dimensional feature vector.

FDLP: Auto-regressive (AR) modeling is an efficient way of
approximating the power spectrum of a signal. It emphasizesthe
peaks of the spectrum, which are more salient. Frequency domain
linear prediction (FDLP) extends this idea to model the timedomain
Hilbert envelope of the signal [9, 10]. The emphasis in this case is
on temporal peaks, which are more robust to noise. In this approach,
we first apply DCT of long segments (10 seconds) of speech sig-
nal [11]. The full-band DCT is windowed into 96 linear sub-bands in
the frequency range of 125-3800 Hz. Linear prediction is performed
on each sub-band DCT samples to obtain parametric sub-band en-
velopes. The parametric sub-band envelopes are stacked to form a
two-dimensional time-frequency representation (similarto spectro-
gram) of the input signal. This two-dimensional representation is
decimated to 100 Hz sampling rate. The output of decimation stage
provides an estimate of the power spectrum of the signal in the short-
term frame level. These linearly spaced power spectral estimates are
then warped to mel axis by critical band integration [12]. Warping
is done using 3s sliding window. The short-term power spectral es-
timates are converted to 60-dimensional features containing 20 cep-
stral coefficients along with their first and second derivatives.



PLP2: The output power spectral estimates from the critical
band integration stage of FDLP, are inverse Fourier transformed to
obtain an autocorrelation sequence [13]. This autocorrelation se-
quence is used for time-domain linear prediction (TDLP), using a
19th-order model. The TDLP provides an all-pole approximation
of the short-term spectrum. The output TDLP parameters are con-
verted to 20 cepstral coefficients using cepstral recursion. Deltas
and double-deltas are appended to generate a 60-dimensional fea-
ture vector at each time frame. Before removing the silence,feature
vectors are warped using a 3s sliding window [12].

Cortical Features: The cortical representation of speech is de-
rived from a two-stage computational auditory model [14], which
is based on neurophysiological investigations of the humanauditory
system. The output of the auditory model is a multidimensional ar-
ray of temporal and spectral modulations along time, frequency, rate,
and scale. It is averaged over a 250 ms sliding window. We firstre-
duce the high dimensionality of cortical features using a traditional
principal component analysis (PCA) to 19 features. Then we com-
pute and concatenate the delta and double-delta features toproduce
a 57-dimensional vector for each frame. Feature warping is applied
next, using a 3s sliding window over the speech segments detected
by VAD. The resulting features have been shown to have some ro-
bustness to additive noise and reverberation in the case where the
speaker models are trained from clean data [15].

3.3. Prosodic Front-end

The prosodic system is trained over F0 and energy contours asthe
preliminary features. The F0 and energy of the signal are extracted
using 10ms frames using the Snack toolkit [16]. The same VAD as
in VAD1 is used. The F0 and energy contours are then estimatedus-
ing a fixed length window of200ms with50ms shift. The contours
are estimated using discrete cosine transform and the first6 coeffi-
cients are used as the representative of the corresponding contours
in each window. A13-dimensional feature vector (6 F0 coefficients,
6 energy coefficients and number of the voiced frames) is then used
to train a gender independent2048-component UBM using diagonal
covariance matrix. A 300-dimensional total variability subspace is
then trained for extraction of the ivectors [17].

3.4. Modeling

Features resulting from the various combinations of voice activity
detectors and acoustic/prosodic front-ends were used to train i-vector
based SID systems. Three types of i-vector sub-systems wereused,
developed at BUT, MIT, and BBN. In the rest of the paper we will
be referring to these sub-systems as ivec1, ivec2, and ivec3, respec-
tively.

Common framework for training and scoring: A universal
background model (UBM) is first trained, and first and second order
statistics are extracted for every signal to be processed. The statis-
tics from the training data are then used to train i-vector extractor
which is then applied on all enrollment and test sessions to trans-
form them into fixed-length low dimensional i-vectors. All subsys-
tems included in our submission use the i-vector/PLDA framework
for modeling. The i-vectors are transformed using linear discrimi-
nant analysis (LDA) and normalized to unit length. Log-likelihood
ratios for each trial are estimated using probabilistic linear discrimi-
nant abalysis (PLDA) [18]. The LDA transform and PLDA parame-
ters are learned from i-vectors extracted from the trainingdata.

Universal background model: Each sub-system used its own
gender-independent universal background model (UBM), repre-

sented as a diagonal covariance Gaussian mixture model (GMM).
Variance flooring was used in each iteration of EM algorithm during
the UBM training. The UBMs for ivec1 and ivec2 had 2048 mixture
components, while ivec3 had 1024.

i-vector extraction: The UBMs were used to generate zero and
first order statistics for training the i-vector extractors[19, 20]. Sub-
systems ivec1 and ivec2 output 600-dimensional i-vectors,while
sub-system ivec3 outputs 500-dimensional i-vectors.

4. SYSTEM CALIBRATION AND COMBINATION

We used two different approaches to our fusion and calibration. First
approach is a classical and well-tested fusion using logistic regres-
sion and only the scores of the subsystems as inputs. The second
one uses a support vector machine (SVM) with linear kernel and the
inputs are scores of the subsystems as well as other side-information
which is known or can be automatically extracted at test time.

Because of the lack of an independent held-out calibration data
set, we used the technique called jack-knifing and we dividedour de-
velopment database into two independent parts on which we trained
the parameters. Parameters trained on first part were applied to the
second part and vice versa. When we finished the system develop-
ment, we used all of the development data for the fusion without
jack-knifing.

4.1. Logistic Regression Fusion

We use the freely available Bosaris toolkit [21], which provides a
logistic regression solution for the calibration and fusion. Both cali-
bration and fusion are based on the following mapping:

lt = a +

N
X

i=1

bisit,

wherelt is the fused (ifN > 1) and calibrated output log-likelihood-
ratio for trialt; N is the number of subsystems to be fused (ifN = 1,
then the result is just calibration);sit is the score of subsystemi for
trial t. The parameters to be optimized are the scalar offseta and the
scalar combination weightsbi. These are optimized using logistic
regression, which minimizes the cross-entropy between thescores
and thesupervised calibration database.

4.2. SVM Fusion

We also investigated the use of an SVM for fusion. Besides theindi-
vidual SID system scores, the SVM classifier can also take in other
measured features of the input audio, such as channel id, gender id,
etc. We experimented with different types of SVMs and we found
the best results when we used ROC area as the objective function
to maximize. ROC area is a performance measure defined as the
fraction of pairs of positive and negative examples that areranked in
correct order:

ROC Area= 1 −
num. swapped pairs

num. pos.× num. neg.

A swapped pair is one where the positive sample has a lower
score than the negative sample. This objective function is optimized
by treating the problem as a classification problem of all positive
and negative pairs. The input to the classifier is a pair of onepositive
sample and one negative sample. The output of the classifier is 1 if
the positive sample’s score is higher, and it is -1 if the negative sam-
ple’s score is higher. The target output is always 1. Joachims [22]
shows that there is an efficient way to perform such optimization.



We experimented with different SID systems and features as in-
put to the SVM. The following “side information” features were con-
sidered: gender id; language of trial (Pashto, Levantine, other); test
channel id (A-H); and number of times the test channel was seen
in enrollment (0, 1, 2+ times). Note that the language id was pro-
vided to the systems at enrollment/test time. All other features were
automatically extracted from the audio.

5. RESULTS

During our development for the RATS Phase 1 evaluation, we built
several systems, differing in the VAD algorithm, acoustic front-end
(one of the front-ends was prosodic), and i-vector extraction. All
systems were trained using the data described in Section 2, and were
evaluated on our development set in terms of equal error rate(EER),
as well as in terms of the two RATS Phase 1 SID performance met-
rics, which were (a) the miss rate (Miss) at the target false alarm rate
of 4%; and (b) the false alarm rate (FA) at the target miss rateof 10%.
Table 1 shows the performance of the individual systems thatpartic-
ipated in the final fusion experiments, in terms of the above metrics.
The scores were obtained by pooling trials across all 8 channels.

It can be seen that the best results are obtained using CFCC fea-
tures, VAD1, and ivec1 extractor. In an earlier set of experiments,
shown in the first two rows of Table 22, we found that CFCCs pro-
vided superior performance across all channels, compared to using
MFCCs. The third row in Table 2 shows the result we obtain with
CFCCs when data from channel B are excluded from the PLDA
model training. The EER on channel B increases from 7.7% to 9.8%,
while staying about the same on all other channels. This indicates
that although CFCCs are more robust than MFCCs, the system per-
formance is still very sensitive to new channels.

Comparing systems 3 and 7 in Table 1 shows that the unsuper-
vised VAD is very competitive to the supervised NN-based VADin
terms of the downstream SID performance. Looking at systems7
and 9, we see that using the denoised audio hurts SID performance.
The denoising technique in system 9 is based on the unsupervised
VAD (VAD3). However in order to build the speaker verification
system, we used VAD1. This mismatch between the two VADs may
explain the degradation from the denoising technique.

Table 3 shows a comparison between alternative fusions, differ-
ing in the configuration (which systems get combined), algorithm
(logistic regression vs. SVM), and usage of side information. We
found no benefit for using side information in LR-based fusion,
while such information helps when using the SVM. The resultsof
Table 3 show that the SVM is better than LR, especially when com-
bining a large number of systems (configuration B). These results
are confirmed on the RATS progress set, as shown in Table 4, across
all test-enroll duration conditions.

6. DISCUSSION AND CONCLUSIONS

In this paper, we described the patrol team submission for DARPA-
RATS Phase 1 speaker identification evaluation, using audiofrom
highly degraded communication channels. Our submitted system
was a fusion of several sub-systems, which differ primarilyin terms
of the features and voice activity detection. It is already known [23]
that fusing multiple sub-systems, which are similar in speaker mod-
eling and different only in terms of VAD and features helps toim-

2Each column labelled A through H corresponds to one of the 8 RATS
channels. Channel G is a relatively noise-free channel, used as a reference
point.

FEA VAD SubSys FA Miss EER

1 CFCC VAD1 ivec1 2.4 6.8 5.3
2 FDLP VAD1 ivec1 3.4 8.9 6.1
3 MFCC VAD1 ivec2 2.6 7.2 5.4
4 PLP2 VAD1 ivec1 3.2 8.4 5.9
5 PROSO VAD1 ivec1 22.6 41.3 15.7
6 CORT VAD2 ivec3 3.4 8.8 6.1
7 MFCC VAD3 ivec2 2.8 7.7 5.6
8 PLP VAD2 ivec3 4.4 10.8 6.7
9 MFCC VAD1’ ivec2 3.2 8.4 5.9

Table 1. Subsystems using various VADs and feature front-ends.
Results (%) are given on our DEV set 30-30 test-enroll condition.

Feature A B C D E F G H

MFCC 8.3 8.2 8.4 9.0 9.4 7.4 5.4 12.1
CFCC 7.4 7.7 7.8 8.9 8.3 6.5 5.4 11.6
CFCC-noB 7.3 9.8 8.0 8.8 8.2 6.6 5.3 11.7

Table 2. Comparison of MFCC and CFCC front ends. VAD1 seg-
mentation, ivec1 sub-system. Results (% EER) on DEV 30s condi-
tion.

Config Fusion type SideInfo FA Miss EER

A LR No 1.4 5.0 4.5
A SVM No 1.2 4.5 4.3
A SVM Yes 1.1 4.3 4.2
B LR No 1.3 5.0 4.5
B SVM No 1.2 4.3 4.1
B SVM Yes 1.0 4.0 4.0

Table 3. System combinations. Configuration ‘A’ refers to the com-
bination of systems (1,3,6,7) in Table 1. Configuration ‘B’ refers to
the combination of systems 1 through 9. Results (%) are givenon
our DEV set 30-30 test-enroll condition.

Condition Primary Fusion Contrastive Fusion

120-120 5.4 4.7
30-30 8.6 8.6
30-10 13.1 10.6
30-3 19.8 16.8
10-10 20.2 17.0
10-3 26.3 21.5
3-10 35.8 31.9
3-3 48.3 40.7

Table 4. Results on progress set. ‘Primary Fusion’ and ‘Contrastive
Fusion’ refer to fusion configurations “A-LR” and “B-SVM”, as de-
scribed in Table 3, rows 1 and 6. Results are miss rate (%) at the
RATS Phase 1 target false alarm rate of 4%.



prove the performance. Also, in previous work on language identi-
fication (LID) for the RATS project [24], we had observed thatde-
tection accuracy was very sensitive to the VAD employed. Forthis
reason we built three different VADs. The first two VADs were su-
pervised, based on NN and GMM modeling. The last one is a two
pass unsupervised VAD based on denoising technique. The results
show that the unsupervised VAD achieved similar performance com-
pared to the supervised ones. We also used different features com-
prised by a variant of cepstral, cortical and prosodic information. We
observed significant improvement (about 24% relative) in EER from
combining multiple systems using a novel SVM-based fusion algo-
rithm that benefited from side information such as gender, language,
and channel id.

In the future RATS evaluations, we will need to address the prob-
lem of making our systems more robust to the unseen channel. We
started studying this problem in this paper where we show theresults
of a single system by isolating one target channel from the training
data. The results show that our systems are very sensitive tothe un-
seen channel, even when using state of the art noise-robust features.
The intuition is that the channel characteristics are very different and
we should address this issue by developing de-noising techniques
which can “normalize” the data, or model adaptation methods. We
also believe that the unsupervised VAD that we developed, will be
more robust to the unseen channel condition compared to the super-
vised trained ones.
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